原子衝突学会誌「しょうとつ」 2018 年第 15 巻第 2 号 Journal of atomic collision research, vol. 15, issue 2, 2018.

原子衝突学会誌 しようとう 第15巻 第2号 2018年

解説静電型イオン蓄積リングを用いた原子分子物理(II)輻射冷却の分子科学 城丸春夫,古川武,東俊行

原子衝突学会 2018 年 3 月 15 日発行 http://www.atomiccollision.jp/

原子衝突学会賛助会員(五十音順)

アイオーピー・パブリッシング・リミテッド (IOP 英国物理学会出版局)

Institute of Physics

http://journals.iop.org/

http://www.eor.jp/

アドキャップバキュームテクノロジー株式会社

http://www.adcap-vacuum.com

有限会社イーオーアール

Electronics Optics Research Ltd.

イノベーションサイエンス株式会社

INNOVATION SCIENCE

http://www.innovation-science.co.jp/

株式会社オプティマ

Optima Corp.

http://www.optimacorp.co.jp/

クリムゾン インタラクティブ プライベート リミテッド

株式会社サイエンス ラボラトリーズ

http://www.scilab.co.jp/

http://www.enago.jp/

http://www.voxtab.jp/

http://ulatus.jp/

真空光学株式会社

空光学株式会社-Vacuum & Optical Instruments-

http://www.shinku-kogaku.co.jp/

スペクトラ・フィジックス株式会社

A Newport Company

http://www.spectra-physics.jp/

ツジ電子株式会社

http://www.thorlabs.jp/

http://www.tsujicon.jp/

http://www.tokyoinst.co.jp/

http://www.navatec.co.jp/

株式会社ナバテック

aster Navatec

仁木工芸株式会社

http://www.g5-hakuto.jp/

http://www.nikiglass.co.jp/

伯東株式会社

丸菱実業株式会社

丸菱実業株式会社

MARUBISHI CORPORATION

株式会社ラボラトリ・イクイップメント・コーポレーション

http://www.ec-marubishi.co.jp/

http://www.labo-eq.co.jp/

原子衝突学会誌

目 次

解説	静電型イオン蓄積リングを用いた原子分子物理(II) 輻射冷却の分子科学	城丸春夫, 古川武, 東俊行	26
2017 년	王度 原子衝突学会役員選挙の結果	選挙管理委員会委員長	40
第 25	回原子衝突セミナーのお知らせ	行事委員会委員長	40
2018 4	年度国際会議発表奨励賞 募集要項	顕彰委員会委員長	41
「しょう	とつ」原稿募集	編集委員会事務局	41
ユーサ	ー名とパスワード		42

静電型イオン蓄積リングを用いた原子分子物理(II) 輻射冷却の分子科学

城丸春夫1*,古川武1,東俊行2

1 首都大学東京理工学研究科 〒 192-0397 東京都八王子市南大沢 1-1

²理化学研究所東原子分子物理研究室 〒 351-0198 埼玉県和光市広沢 2-1

shiromaru-haruo@tmu.ac.jp

平成29年12月8日原稿受付

2013年の本シリーズで,「静電型イオン蓄積リングを用いた原子分子物理(I)」として装置開発の経 緯,現状を含めた一般的な紹介を行った.本稿はその続編である.首都大のイオン蓄積リングで中 心的な課題となっている,高温分子負イオンの輻射冷却過程について,実験手段と結果の解釈につ いて解説する.また遅延過程や輻射冷却の理論的な取り扱いについて,基本的な枠組みを紹介する.

1. 緒言

イオンビームの軌道を静電場によってのみ制 御する静電型イオン蓄積リング(E-ring)につ いて,本稿に先行する解説記事を「しょうとつ」 に書いたのは4年前である[1].当時,我々は輻 射冷却に関する議論に関する優先権を論文発表 において激しく争っており,その内容を記事に 含めることはできなかった. その後, 関連する 論文が、我々を含め数多くのグループから発表 され,ひとまずの決着を得たので,輻射冷却実 験について改めて解説をする. 輻射冷却は極め て一般的な現象でありかつ多くの場面で重要で あるにも関わらず,これを取り扱う研究分野は 特殊である。おそらく歴史を反映しているのだ ろうが. いくつかの基本的な式が説明なしに導 入されるなど,独特の論理が展開されることも 多い. そこで、本稿は初めて輻射冷却に関する 論文を読む人に向けた入門的解説記事を目指し ている.

本題に入る前に,各地の E-ring の現状を簡単 に紹介する.先行記事が出た時点では,ELISA (Aarhus) [2], ESRING (KEK) [3], TMU E-ring (首都大) [4], Mini-Ring (Lyon) [5] の4台のみ が稼働していたが, 2015年に Schmidt の総説 [6] が書かれたときには,(北から順に)DESIREE (Stockholm) [7], FLSR (Frankfurt) [8], CSR (Max Planck Institute for Nuclear Physics) [9], RICE (理研) [10] を合わせて 8 台が稼働してい る.DESIREE, CSR, RICE は液体ヘリウム温 度以下で運転される極低温リングで, 10^{-13} Pa の極高真空下で 1 時間以上のビーム蓄積が達成 されている.さらにさまざまな光源と組み合わ せることなどを目的とした数台の E-ring が製 作・計画中である [11-14].なお,先行記事で 紹介した首都大の新しい卓上リング (μ E-ring) では,現在ではミリ秒単位のイオン周回に成功 しており,本格的な運転も近い.

各地の E-ring が目指す科学は多様であるが, 孤立分子の輻射冷却過程の解明は重要な課題の 一つである.輻射冷却過程は分子における電子 励起・脱励起サイクルにおいて,理解がほとんど 進んでいない過程である.一般に紫外・可視光 などで励起された電子状態のエネルギーは,速 やかに蛍光を発することにより放出されるか, 内部転換(Internal Conversion: IC)によって 振動励起状態に移行する.場合によってはスピ ン状態が変化して準安定状態が生成することも ある.これらの過程は分子科学の中心的な課題 として非常に詳しく調べられている.溶液など 凝縮系であれば振動エネルギーの媒質への散逸 が ps オーダーの時定数で進むので,電子エネ ルギーが失われた時点で脱励起は事実上完了す る.一方,孤立系においては衝突による冷却が 無いため,振動エネルギーははるかに遅い過程 である輻射によってのみ失われる.この冷却速 度を求め,輻射冷却過程を解明することは,電 子励起・脱励起サイクルの全貌の理解に欠かせ ない.実験にあたっては,分子を長時間真空中 に孤立させる必要があるので今まで実験研究が 進展してこなかったが,それがゆえに,質量に 依らず分子イオンが蓄積できる E-ring の強みが 大きく発揮される課題である.

TMU E-ring における輻射冷却の研究には, Gothenburg 大の Klavs Hansen 博士 (現所属は 天津大学)のイニシアティブが大きい. E-ring が出現したころ、輻射冷却は分子科学の領域で はマイナーな分野であった. 輻射冷却は統計に 支配され、分子の個性が現れる余地が無いよう に見えたこともその一因である. 共同研究が始 まった 2007 年当時でも, 我々全員が輻射冷却 研究に魅力を感じていたわけではない. Hansen 氏は,元々原子核物理を専門としており,分子の 個性がはっきりしない構造に乏しいスペクトル から、理論的取扱いを駆使して有益な指標とな る情報を引き出す手腕にとても長けている [15]. また,輻射冷却が興味深い分野であることを,時 間をかけて熱心に説明してくれた.ただし,説 明は非常にわかりにくく, 文章によっても口頭 の議論でも、彼のやり方をきちんと把握するこ とは困難であった.ちょうど前回の「しょうと つ」記事を書いていた 2013 年ごろ, 輻射冷却に 分子の個性が豊かに表れることがわかり、そこ に至って我々もようやく, 輻射冷却の面白さを 本当に理解した.本稿ではその契機となった, 個性豊かな輻射冷却過程を中心に紹介する [16-22]. 理論の枠組みについては,非常に粗い近似 と細かい補正が混在していることに違和感があ るかもしれない.しかしながら、物事の本質を ズバリついているため,一度理解すると美しい 世界が眼前に広がる.輻射冷却業界は,揺るぎ ない土台を作り上げてきた一方で,粗い近似が しかるべき分子科学・理論計算の専門家により 改善されることを信じ,その日に備えている.

本稿で対象とするイオンは、直鎖型炭素クラ スター(数個から十数個の炭素原子が2重結合に より直線状につながった分子)の負イオン (C_n) およびポリイン(直鎖型炭素クラスターの端が 水素原子等によって終端され、炭素同士の結合 が3重結合と単結合である直線分子)の負イオ ン $(C_{2n}H^-)$ である. 一般にイオン蓄積実験で は、周回中のイオンをレーザーにより励起(加 熱)し,生成した中性粒子がリングから飛び出し てきたところを検出する. 輻射冷却の観察, す なわち種々の蓄積時間における内部エネルギー の測定は、遅延過程で生成した中性粒子の強度 や時間特性の解析により行う. 正イオンは解離 によって中性種を与えるが、負イオンの場合は 電子脱離と解離のどちらでも中性種を与えるの で,一見負イオンの方が複雑に見える.しかし 多くの場合, 負イオンの脱離しきい値は解離し きい値よりはるかに低く, 解離反応の寄与を考 えなくても良い. 解離反応においては様々な解 離生成物を与えるが、電子脱離は親分子、すな わち C_n や C_{2n} H のみを与えるので, 理論的な 取り扱いは負イオンの方が単純になる.

本研究では、高温の負イオンを TMU E-ring に入射し、輻射冷却によって冷えていく周回イ オンに可視または近赤外パルスレーザーを合流 させて、光励起による遅延電子脱離生成物を検 出した.対象としたイオンの IC 過程は ps から ns で完了するので [23-25], µs から ms 領域とな るイオン蓄積実験の時間スケールでは、光励起 は再加熱と実質的に同義である.

負イオンの輻射冷却過程は, 星間分子の分野で も重要である. 炭素が豊富にある環境では様々 な有機分子とともに, 直鎖状の炭素クラスターや ポリインが存在することが早くからわかってい た [26]. 種々の分子イオンも発見されており, 特 に Diffuse Interstellar Bands のキャリアとして 認められた C⁺₆₀ やポリイン負イオンが注目され ている [27,28]. ポリイン負イオンのうち C_{2n}H⁻ (n = 2 - 4) は星間分子としてすでに同定され [29-31], 星間炭素クラスター負イオンの存在も 確実視されている. 星間負イオンの生成では M + e⁻ → M⁻ のような2体衝突が重要であると 考えられている.対象とする分子が小さい場合, 生成効率は電子付着直後における高温イオンの 輻射冷却と電子脱離の競争によって決まる. 今 まで、この radiative electron attachment は極 めて大きい断面積を持つことが指摘されてきた [32]. 一方,炭素数が偶数のクラスター負イオ ンは奇数のクラスターやポリインと比べて輻射 冷却がはるかに早く, 電子脱離が抑制されるこ とが、以下で紹介するイオン蓄積実験により示 されている.このことは、星間における分子負 イオンと対応する中性種の割合について、偶数 炭素クラスター負イオンが特異的に高くなって いる可能性を示唆している.

2. 遅延電子脱離を理解するための理論的 枠組み

光電効果のように光吸収による電子脱離のような直接過程はfsといった単位の時間スケール で起こるが,その後に繰り広げられる輻射冷却 と遅延電子脱離のmsからsにおよぶ遅い競争 過程は,光励起エネルギーが統計重率に従って 振動エネルギーに分配された後のダイナミクス である.従って,量子力学的に極めて多数の準 位を取り扱う必要があるが,このような状況の ために展開された量子統計力学的アプローチは 1930 年代後半にまで遡る.

孤立多体系の代表である原子核物理では,N. Bohrによって,複合核分裂の速度が分裂前後の それぞれの全内部エネルギー(E)に対する状態 密度を数え上げることにより与えられることが 定式化された[33].さらにV.Weisskopfは,複 合核からの中性子放出に対して,詳細釣り合い の原理から中性子捕獲断面積を使って,その速 度を計算した[34].この理論的枠組みは,およ そ 80 年後の現在も有効であり,そのまま励起 クラスターに対しても適用可能である.遅延電 子脱離も、その速度定数 (k_d) が内部エネルギー (E)の関数であるために、遅延電子脱離の結果 生成される中性粒子を計数することにより、後 述の手順で E を知ることができる.そこから内 部エネルギーの減少に対する寄与という形で輻 射冷却過程が議論可能となる.

3. 遅延電子脱離過程の観察

イオン蓄積による遅延電子脱離観測実験の典型的な配置を図1に示す.一般的なレースト ラック型の E-ring では2か所の直線部があり, ここで負イオンとレーザーを合流させる.合流 衝突では進行方向に広がった負イオンの集団に くまなくレーザーが照射されるため,光励起され たイオンの数を稼ぐことができ,断面積が小さい 遅延過程の観察も可能である.レーザー照射領 域と反対側の直線部延長上に設置した MCP で 中性粒子を検出することで,励起された負イオ ンが周回時間スケール以上の寿命を持つような 遅延過程のみを選択的に観察することができる.

図 1: 遅延電子脱離実験の概略図.リングを周回 する負イオンを直線部で光励起し,反対側の 直線部を進行中に遅延電子脱離で生成した 高速中性粒子を MCP で検出する.より寿 命の長いイオンはさらに周回を続け,1/2 + n周の周回中に得られた信号が一連のピー クを与える.

 C_5^- の遅延電子脱離信号を図2に示す.レー ザー照射後イオンが1/2周したタイミングで ピークが出現し,その後に3/2周,5/2周のピー クが続く.挿入図に示すように,これを両対数 プロットすると直線になり,減衰が指数関数的 ではなく「べき乗則」に従うことがわかる(補遺 A).

 図 2: 周回周期 35.4 µs で蓄積された C₅⁻ のレー ザー誘起遅延電子脱離信号.レーザー照射 17.7 µs 後から周回ごと 35.4 µs 間隔で電子 脱離によるピークが見える.挿入図はレー ザー照射後の時間と電子脱離信号の両対数 プロット.減衰が指数的(赤丸)ではない ことがわかる.青と緑の三角ではレーザー 照射のタイミングが異なるが,いずれもほ ぼ直線になり,傾きは -1(青実線)よりも 急になっている.黒丸は平坦なエネルギー 分布を仮定した場合の計算値.

しきい値のごく近傍を除いて、通常の振動輻 射冷却はレーザー誘起遅延電子脱離よりはるか に遅く, レーザー照射後に観測される中性粒子 計数率の減衰は電子脱離の速度定数 kd に支配 される.内部エネルギーの広がりが大きい高温 イオンでは、電子脱離により内部エネルギーの 高いイオンほど早く失われるので、この過程を depletion cooling と呼ぶ. 図2に見られるべき 乗則に従う減衰は,電子脱離が起こっている内 部エネルギー領域で初期分布が平坦であること, depletion cooling が支配的であることを示して いる.べき数は -1 に近いが,対象とする分子 が小さい場合は、べき数が-1以下(負の大き な値)になる.観測している領域で内部エネル ギーが平坦に分布している限り,中性粒子の減 衰曲線は厳密にべき乗則に従い,常に同じ形に なる.実際には内部エネルギー分布は平たんで なく,減衰曲線が実験条件に依存する場合があ り、そうなれば輻射冷却に関する情報が得られ る.ただし分子を見ただけで定性的に減衰曲線 を予想することは現時点では難しい.

例として,フタロシアニン亜鉛負イオン

図 3: フタロシアニン亜鉛負イオンのレーザー誘 起遅延脱離信号の (a) 蓄積時間依存性と, (b) 励起エネルギー (多光子吸収なのでレーザー フルエンス)依存性. (c) レーザー誘起遅 延脱離信号積分強度のフルエンス依存性の 両対数表示.数 mJ では飽和挙動を示すが, それ以下では直線で近似でき,傾きは蓄積 時間が長くなると急になる [16]. Copyright 2013, by the American Physical Society. .

(C₃₂H₁₆N₈Zn⁻,以下では ZnPC⁻)を蓄積し, 1光子エネルギーが 1.9 eV のパルスレーザーで 多光子励起した時の遅延電子脱離信号の減衰を 図 3 に示す [16]. 蓄積時間が長くなると周回イ オンは冷えてくるので,光励起後の内部エネル ギー分布も低エネルギー側に寄ってくるはずで ある.しかし図 3(a) に示すように,減衰曲線に 顕著な差は見られない.一方,レーザーフルエ ンスを変えて吸収光子数の分布を変化させると, 図 3(b) に示すように減衰曲線は敏感に影響を受ける.輻射冷却の効果は収率(積分強度)のフ ルエンス依存性に反映され,図 3(c) に示すよう に,その勾配は蓄積時間とともに急になる.こ の結果は,後述の energy window の考え方と,吸 収光子数のポアソン分布に基づいたシミュレー ションによって再現することが可能である [16]. ZnPc⁻ のような振る舞いをしない負イオンもあ り,例えば C_{60}^{-} や C_6H^- などでは減衰曲線が蓄 積時間に依存し,そこから輻射冷却に関する知 見が得られている [17, 18].

ここまでは、レーザー励起後に生じる遅延電 子脱離信号の減衰について議論してきた.本節 冒頭で述べた通り、図1のような配置による遅 延電子脱離実験では, 負イオンが直線部を飛行 する時間内に起こった電子脱離を選択的に検出 するため、特定の寿命を持った成分を優先的に 観察することになる. kd は内部エネルギーとと もに急激に増加する関数であるため、この配置 特有の time window に対応する内部エネルギー 領域は、イオンの内部エネルギーの広がりと比 べてはるかに狭い. このような実験装置上から の制約による検出可能範囲を energy window と よび、検出効率のピーク値 E0 により表記する. E_0 は, time window における $k_d e^{-k_d t}$ が最大と なる内部エネルギーとして求められる. 小さい 分子イオンでは energy window の幅は非常に狭 く, E₀は脱離しきい値のすぐ上に位置する.光 吸収前の内部エネルギーを E とすると、例えば レーザー1光子吸収による遅延電子脱離実験で は, $h\nu$ 分のエネルギーを得て $E+h\nu=E_0$ となっ たものを選択的に検出することになる. これを 用いると、レーザー照射のタイミング(t_{las})を 走査することにより, 照射前の内部エネルギー が $E_0 - h\nu$ であるイオン数の時間変化について 測定することができる [19,20].

 C_5^- について結果を図 4(a) に示す.長波長の レーザーで励起し $E_0 - h\nu = 0.92$ eV の領域を 測定した場合, t_{las} が小さいところで遅延電子脱 離信号強度 $I(t_{las})$ が増加し,その後減少に転じ

図 4: 種々のレーザー波長による C₅ のレーザー 誘起電子脱離信号積分強度の t_{las} 依存性. (a)レーザー合流部の反対側の直線部の直 下で中性粒子を検出した場合.ピークが観 測され,ピーク位置が波長に依存する.(b) レーザー合流部の直下で中性粒子を検出し た場合,波長に依存して傾きは変化するが, 常に時間に対して単調に減少する.

るが、短波長のレーザーで励起し、 $E_0 - h\nu = 0.37$ eV の領域を測定した場合、 $I(t_{las})$ は増加 する一方である. $I(t_{las})$ は 10 ms の時間スケー ルで変化しており、輻射冷却による内部エネル ギー分布の変化を観測していることがわかる. 参照データとして、レーザー合流部の直下で中 性粒子を検出すると、図 4(b) に示すように、波 長に依らず収率は単調減少する. k_d がいくら大 きくても検出ができる,つまり energy window の上限が無いため, t_{las} 曲線が積分型になるため である.励起エネルギーが大きくなると,より 低い内部エネルギー状態まで検出可能になるた め,減衰が遅いことがわかる.

 E_0 の数値を求めるためには、内部エネルギー (E)の関数として脱離の速度定数 $k_d(E)$ を求め る必要がある. $k_d(E)$ は実験的に求めることが 望ましいが、先述の Weisskopfの取扱いと全く 同様に、詳細釣合の原理を適用して、電子付着 断面積から電子脱離速度を概数として見積もる ことも可能である.

素反応 M⁻ = M + e⁻ の平衡状態において, 電子付着の速度定数を k_a とし, M⁻, M, e⁻ の 状態密度をそれぞれ ρ (M⁻), ρ (M), ρ (e⁻) とする と $k_d\rho$ (M⁻) = $k_a\rho$ (M) ρ (e⁻) の関係がある.体積 V の井戸型ポテンシャル中の電子を考えると,

$$\rho_{\rm e^-} = \frac{m^{3/2} V \epsilon^{1/2}}{2^{1/2} \hbar^3 \pi^2}$$

を得る (補遺 B). ここで m, ϵ はそれぞれ電子 の質量と運動エネルギー, \hbar は換算プランク定 数である.電子の速度を v,電子付着の断面積 を σ とすると,

$$k_{\rm a} = \frac{v\sigma}{V} = \frac{2^{1/2}\epsilon^{1/2}\sigma}{m^{1/2}V}$$

となるので,

$$k_{\rm d} = \int \frac{k_{\rm a} \rho_{\rm M} \rho_{\rm e^-}}{\rho_{\rm M^-}} d\epsilon = \int \frac{m \epsilon \sigma}{\hbar^3 \pi^2} \frac{\rho_{\rm M}}{\rho_{\rm M^-}} d\epsilon$$

を得る.負イオンの内部エネルギーを E,電子 親和力を E_a とすると, ϵ の積分範囲は $0 \sim E - E_a$ である. ρ_{M^-} , ρ_M は内部エネルギーの急峻な関 数であり,エネルギー保存則から M^- の内部エ ネルギーが E のとき, M の内部エネルギーは $E - E_a - \epsilon$ である.状態密度には電子状態の多 重度(軌道角運動量とスピン)と脱離電子のス ピン多重度(=2)を乗ずる必要があるので,こ の因子をまとめて g と書くと

$$k_{\rm d} = \int_0^{E-E_{\rm a}} g \frac{m\epsilon\sigma}{\hbar^3\pi^2} \frac{\rho_{\rm M}(E-E_{\rm a}-\epsilon)}{\rho_{\rm M^-}(E)} d\epsilon \qquad (1)$$

を得る. σ は分極率 α を用いて Langevin 断面積

 $\sigma = (\alpha e^2 / 8\epsilon_0^2 \epsilon)^{1/2}$ で近似する. ここで e は素電 荷, ϵ_0 は真空の誘電率である.分極率を $Å^3$, エ ネルギーを eV で与えたときの断面積(Å²)は $\sigma \simeq 16.9 (\alpha/\epsilon)^{1/2}$ となる. σ 自体は $\epsilon = 0$ で発散 するが,式(1)の被積分関数としては分子に ϵ が 含まれているので0に収斂する.上の式で用い る状態密度の計算はやっかいな問題であり、現 時点では調和振動子近似による概算のみが可能 である.理論・計算化学の専門家の参入が待た れる. また, 分極率も多くの場合理論値を使わ ざるを得ない. 高温時の分極率は不明であり, そもそも Langevin 断面積で良いのかという問 題はあるが、状態密度の計算ははるかに粗い近 似に基づくので、断面積の方は些細な問題であ る. C₅ について振動数や分極率の文献値を用 いて計算した k_d を図 5 に示す. しきい値 (2.85 eV) 近傍から急激に立ち上がる関数であること がわかる [16].

図 5: C₅⁻の k_dの内部エネルギー依存性.式(1) による理論曲線.

4. 振動遷移による輻射冷却

内部転換を経た高温分子において,その内部 エネルギーは各自由度に統計的に分配されてい る.多くの場合,分子は状態密度の高い「電子 基底状態の振動励起状態」にあり,輻射冷却は 振動遷移(赤外輻射)による.図4で観測され た収率の変化は輻射冷却による内部エネルギー 分布の変化を特定のエネルギー領域で定点観測 していることになる.時間スケール 10~100 ms 程度の,分子としては極めて遅い過程を孤立状 態で観測していることがわかる.

実験結果の妥当性を判断するためには振動輻 射冷却速度の理論値と比較することが有効であ るが、高温分子の輻射冷却を真っ当なやり方で 計算することは今のところ不可能である. そこ でも調和振動子近似を持ち込んだ概算がなされ ている. 高温分子では各振動モードにおいて振 動量子数の大きい準位まで分布しており、そこ から一つずつ輻射によって降りてくる.まず与 えられた全振動エネルギーに対して,各振動モー ドの振動準位の統計的分布を計算する.特定の 振動モード*i*が振動量子数*n*だけ励起されてい る確率は、各振動モードに全内部エネルギーを 分配する場合の状態密度 $\rho(E)$ と、最初にその振 動モードに nhvi だけ分配した時の,残りの内部 エネルギー E – nhvi を振動モード i 以外に分配 する状態密度 $\rho_i(E - nh\nu_i)$ の比として求める (振 動モード*i*の状態は決まっているので自由度が 無い).従って,振動遷移のA係数を用いて,振 動モード*i*の振動輻射冷却速度定数は以下のよ うに与えられる.

$$k_{\nu}^{i}(E) = A_{1,0}^{i} \frac{\sum_{n} n\rho_{i}(E - nh\nu_{i})}{\rho(E)}$$
(2)

各振動モードの輻射冷却速度が量子数に比例す るため¹,低内部エネルギー状態における冷却 は遅い(当たり前であるが). *A*ⁱ_{1,0}は赤外領域の 振動子強度から求めることができる².

振動数,吸収強度の文献値から求めた輻射冷 却速度を図6に示す.振動輻射冷却には複数の 振動モードが寄与するため,頻度 (s⁻¹) ではな く $\Sigma h \nu_i k^i_{\nu}(E)$ で与えられるエネルギー損失速度

図 7: 図 4(a) に対応するシミュレーション.低内 部エネルギー側の曲線から順に E₀ – hν = 1.07, 0.92, 0.57, 0.37 eV における分布の経 時変化を示す.

(eV/s) で表記してある. 適当な初期温度を仮定 して,輻射冷却速度と遅延電子脱離速度から, 収率の t_{las} 依存性をシミュレートした結果を図 7に示す.計算が粗い近似に基づいているにも かかわらず,実験は概ね再現される. このこと は,高温の C_5^- の冷却(脱励起)は単純に振動 輻射冷却によっていることを示している.

同様の結果は他の奇数クラスター(C_7)やポ リイン(C_6H^-)でも得られた[17,20]. 輻射冷却 速度は重要な物理量であり,最近,極低温系での エネルギー散逸過程を議論する際にも注目され ているトピックでもある.そのなかで,比較的 高温ではあるが真空中に用意された孤立量子系 の輻射冷却のダイナミクスを10~100 ms 程度の 時間スケールで初めて明瞭に捉えた意義は大き く Physicist としては感激するところであろう. その一方で,全ての分子でこうなると分子の個 性といったものは反映されないため Chemist は

¹規格化された Hermite 多項式 $C_n H_n(\xi)$ の漸化式による と、 $\xi C_n H_n(\xi)$ から生成する「次数が1下がった Hermite 多項 式」 $C_{n-1} H_{n-1}(\xi)$ の係数は $\sqrt{n/2}$ である. 従って、調和振動 子近似で振動量子数 n から n-1 への遷移モーメント $\mu_{n,n-1}$ は、1 から 0 への遷移モーメント $\mu_{1,0}$ の \sqrt{n} 倍であり、A 係 数は n 倍になる.

²吸収強度 (IR Intensity) は km/mol という単位で与えられ ることが多い. 吸収強度 f_i から断面積 $\sigma_i \wedge \mathrm{d} \sigma_i = f_i c/N_A \nu_i$ により, 断面積から A 係数へは $A_{1,0}^i = 8\pi \nu_i^3 \sigma_i/c^2$ により変 換する. ここで c, ν_i , N_A はそれぞれ光速度, モード i の振 動数, アボガドロ定数である.

図 8: シミュレーションによる、C₆H⁻の内部エネルギー分布の時間発展.(a) イオン生成時(紫実線)と生成後 10 µs(青実線).(b) イオン生成後 1 ms.(c) イオン生成後 20 ms(青点線).赤の実線は光励起後の分布, 青の実線は光励起されなかった成分における分布を示す.(d) ここからは光励起した 成分のみを示す.光励起直後(赤点線)および 10 µs後(橙実線).縦軸のスケールは (c) の 3/20.(e) 光励起後 1 ms.縦軸のス ケールは(d) の 1/6.

残念に思うだろう.

以上の結果を俯瞰的に見るために、 C_6H^- を 対象として、高温イオンの生成→輻射冷却→光 励起(再加熱)→輻射冷却における内部エネル ギーの時間発展をシミュレートした結果を図 8 に示す [21]. 図 8(a) はイオン生成時(イオン源 内)の温度を 5000 K と仮定した時のボルツマ ン分布と生成後 10 μ s (リング入射前)の分布で ある.高エネルギー成分は早い電子脱離によっ て失われる.残ったイオンでは特定の伸縮振動 モードによる冷却速度が圧倒的に高いため、内 部エネルギー分布に一時的な振動構造が出現す る(図 8(b)). さらに時間が経過すると振動構造 が消え、ボルツマン的な分布に収斂するところ は示唆的である(図 8(c)). ここで光励起すると、 一部は $h\nu$ 分高エネルギー側にシフトし、高エネ ルギー成分のほとんどが脱離によって失われる (図 8(d)).実験ではこの失われた成分を見てい る.その後再び冷却が始まり,振動構造が出現 する (図 8(e)). C₆H⁻の場合,イオン蓄積・遅 延電子脱離実験で観察された結果は,このよう なスキームで矛盾なく説明することができる.

5. 再帰的電子遷移による輻射冷却

高温分子がそのエネルギーを内部自由度に統 計的に分配する際,電子励起状態の寄与は無視 されることが多い.しかし電子励起状態のエネ ルギーが内部エネルギーの総和に比べて十分低 ければ,統計的 (熱的)に分布する電子励起状 態が無視できなくなる.電子遷移の遷移確率は 振動遷移と比べてはるかに大きく,一回の遷移 で放出するエネルギーも大きいので,双極子許 容な電子励起状態が 1%でもあれば,高温分子 は電子遷移(蛍光放出)によって急速に冷却す る.このような蛍光は,特に再帰蛍光(Recurrent Fluorescence: RF)と呼ばれる.RFの速度定数 $k_{\rm RF}$ がその内部エネルギーにおける $k_{\rm d}$ よりも大 きい場合,レーザー誘起電子脱離信号の減衰は $k_{\rm RF}$ に支配される [17].

中性分子を含めると,RF研究の歴史は長い. 1966年ごろには,蛍光寿命が異常に長い現象 (ダグラス効果)がNO₂等いくつかの分子でみ いだされており,RFによって説明されていた [35].RF過程は振電相互作用に係る重要な課題 であり,中性分子を対象に多くの研究が行われ てきた [36-38].孤立イオンの冷却に,熱的に分 布した電子励起状態が寄与するというアイディ アは,Légerらによって提唱された [39]³.そ の後イオントラップやLyonのMini-Ringを用 いた実験で,アントラセン正イオンの輻射冷却 が振動輻射で予想されるものよりはるかに速い

³Léger らは、内部転換とその逆過程(逆内部転換, IIC) による平衡をポアンカレの回帰定理 (Poincaré recurrence) に 見立て、IIC を経由する発光を、洒落を効かせて Poincaré fluorescence と名付けた.本稿では従来通り再帰蛍光 (RF) と 呼ぶことにするが、研究会などではポアンカレ蛍光と言ってい ることもある.

ことが観測され,この過程が RF により説明さ れた [40,41].アントラセンのような多環芳香族 炭化水素 (PAH) イオンは星間分子として重要 視されており,各地の E-ring で精力的に研究が 続けられている [42, 43].さらに大きい分子で は,Mini-Ring における実験に先行して,高温 C_{60}^{-} の輻射冷却に電子遷移が効いていることが ELISA で示されている [44].ただし,分子があ まり大きくなってしまうと黒体輻射と区別が曖 昧になってくる.高温物体が可視光を放出して 冷える現象は珍しいことではない.一方,以下 に示す C_{6}^{-} のように,小さい分子における電子 的な冷却は疑いなく RF 的な過程である.

 $k_{\rm d}$ が減衰を支配する $C_6 H^- \geq k_{\rm RF}$ が減衰を支 配する C_6^- について, レーザー誘起遅延脱離信号 を図 9(a)(b) に示す [17]. $C_6 H^-$ では照射後 30 周以上信号が観察されており, 減衰は実線で示 す depletion cooling のシミュレーションとよく 一致する.一方, C_6^- では電子脱離と競合する 再帰蛍光 ($k_{\rm RF}$) により, イオンがすぐに脱離し きい値以下に冷えてしまうため, 3 周目の信号 が検出限界である.

式 (2) と同様の考え方で,状態密度を使って k_{RF} を計算することができる.電子励起状態の 基本振動数は基底状態と変わらないと近似する と, $\rho(E)$ の関数形は共通である.与えられたEに対して,電子励起状態では振動励起に使える 内部エネルギーが少ないので,i番目の電子励起 状態(エネルギー ϵ_i)の統計的な分布は

$$g_i(E) = \frac{\rho(E - \epsilon_i)}{\sum_j \rho(E - \epsilon_j)}$$

で与えられる.通常,分母については電子基底 状態 ($\epsilon_0 = 0$)の寄与が圧倒的に大きいので単に $\rho(E)$ としてもかまわない.電子遷移の速度定数 は *A* 係数を用いて $k_{\rm el}^i = A_{\rm el}^i g_i(E)$ で与えられる (補遺 C).

 $C_6^- \ge C_6 H^-$ について,それぞれの電子準位 図を図 10 に,上述の手法で求めた双極子許容 な電子励起状態分率を図 11(a) に示す. C_6^- に は 1.16,2.04 eV に双極子許容の電子励起状態 ${}^{2}\Pi_q, {}^{2}\Sigma_q$ があるため,その分率は電子脱離し

図 9: (a) C_6H^- と (b) C_6^- のレーザー誘起遅延 電子脱離信号.中性粒子はレーザー合流側 で測定している.レーザー照射直後の t =0には多光子吸収に起因する高内部エネル ギー成分の寄与があるため,1周目の強度 で規格化した. C_6H^- では振動輻射冷却の 効果により,減衰に蓄積時間依存性が観測 されるが, C_6^- では蓄積時間依存性がほと んど見えない.

きい値 (4.18 eV) 近傍で数%程度である. 一方, C₆H⁻ にはそのような低いエネルギーの電子励 起状態は無く,しきい値 (3.81 eV)をはるかに 越えなければ電子励起状態に分布しない. その ような高内部エネルギー状態では脱離が非常に 速いため,熱的に分布する電子励起状態は無視 できる.

このようにして計算した kⁱ_{el} を図 11(b) に示

図 11: (a) C₆H⁻, C₆⁻ における電子励起状態の分 率. (b) C₆⁻ の各電子励起状態を経由する RF の速度定数 (kⁱ_{el}).

す.励起エネルギーの低い²П_a状態の寄与が先 に立ち上がるが, 脱離しきい値より上では A 係 数が大きい²Σ_a状態の寄与が圧倒的に大きい. 速度定数は10⁵ 秒オーダーで,図9(b)の減衰が 非常に速いことを合理的に説明できる. C₆-につ いて,高温イオンの生成→輻射冷却→光励起(再 加熱)→輻射冷却における内部エネルギーの時 間発展をシミュレートした結果を図12に示す. 図 12(a) は 5000 K のボルツマン分布と 10 µs 後 の分布である. 脱離しきい値より高エネルギー の成分の一部が RF により安定化するため,低 エネルギー側にコブが現れることがわかる. そ の後,振動輻射冷却により低エネルギー側にシ フトしていき (図 12(b)), 20 ms 後にはボルツマ ン的な分布を示す(図12(c)). 光励起をすると, 脱離しきい値より高エネルギー側に分布した成 分のほとんどが RF によって安定化し、低エネ

ルギー側のピークを形成する (図 12(d)).電子 脱離より冷却が早いので,脱離信号は弱く,減衰 も早くなる.その後はふた山の分布を保って振 動冷却により低エネルギー側にシフトする (図 12(e)). C₆の実験結果は以上のスキームで矛盾 なく説明することができる.電子脱離しきい値 より高エネルギーの成分が生き残ること,その 結果エネルギー分布にふた山が生じることなど, C₆H⁻とは全く異なったふるまいをしているこ とがわかる.なお,C₆のRF についてはその 後,より時間分解能が高いイオンビームトラッ プ (EIBT)を用いて,さらに詳細な情報が報告 されている [45].

TMU E-ring では, さらに小さい分子である C_4^- でも RF の寄与が大きいこと, 先述の energy window の考え方を適用すると, C_4^- の電子脱離

図 12: シミュレーションによる, C₆⁻の内部エネ ルギーの時間発展. (a) イオン生成時 (紫 実線) と生成後 10 µs (青実線). (b) イオ ン生成後 1 ms. (c) イオン生成後 20 ms (青点線).赤の実線は光励起後の分布,青 の実線は光励起されなかった成分におけ る分布を示す. (d) ここからは光励起した 成分のみを示す.光励起直後(赤点線) お よび 10 µs 後(橙実線).縦軸のスケール は (c) の 3/10. (e) 光励起後 1 ms.

Copyright© 2018 The Atomic Collision Society of Japan, All rights reserved.

しきい値よりはるかに低い内部エネルギーにお ける RF の寄与が測定できることを明らかにし ている [22].

一般に RF が輻射冷却に寄与するためには,電 子脱離,イオン化,解離など,分子を壊す反応 のしきい値が高いこと,低エネルギー領域に双 極子許容の電子励起状態があることが条件であ る.つまり分子の様々な個性が強く反映される 過程であると言える.また,解離しきい値の高 い正イオンにおいて,RF はより一般的な現象 と考えられる.今までに RF が見つかったイオ ンは小さい負イオンと大きい正イオンであるが, 小さい正イオンでも RF が重要となるケースが 近い将来見つかると期待される.

6. 回転準位の輻射冷却

今まで述べた解析では回転状態を無視してい るが、小さい分子では回転エネルギーの寄与が 相対的に大きく、回転が大きな役割を果たす場 合もある。例えば銅や銀の2量体負イオンの遅 延解離がべき乗則に支配される理由として、回 転準位による速度定数の違いが提案されている [46].

孤立状態で回転分布が平衡に達するまでの過 程は,振動輻射冷却の先にある未解明領域であ る.回転準位間の遷移確率は振動遷移のそれと 比べてはるかに小さく,回転輻射冷却を観察す るためには数十秒から数百秒単位の長時間蓄積 が必要である.また,壁からの輻射によって回 転励起が起きるので,リングの内壁を十分に冷 やすことが望ましく,容易な実験ではない.現 在稼働している3台の極低温リングはこれらの 要請を満たす数少ない装置である.

CSR では CH⁺ を長時間蓄積し,レーザー誘 起解離の高分解能励起スペクトルで回転準位の 分布を測定した [47].蓄積当初,J = 0状態の分 布は J = 1,2の状態と比べてはるかに低いが,数 +秒の蓄積で J = 0 にどんどんたまっていく様 子が鮮やかに示されている.J = 2状態は,100 s 程度でほぼ消失する. 一方 J = 1 状態は 200 s でも平衡に達していない. ここから推定され るリング内部の実効的な温度は約 20 K であり, 10 K 以下という実測のリング内壁温度と一致 しない. 引き続き報告された OH⁻ でも同様に 実効的温度が 15 K と推定された [48]. ところ が,これに引き続き最近行われた DESIREE で の OH⁻ 実験では,見事にリング温度と回転温 度が同じ 13.4 – 13.5 K で一致した [49]. RICE でも他の分子イオンを対象として回転輻射冷却 の研究が進んでおり,近いうちに成果が発表さ れるはずである. このように蓄積リング研究で は,次の段階での激烈な競争がスタートしたと いえる.

7. おわりに

イオン蓄積実験から明らかになった C_n^- の輻 射冷却スキームは, n = 4, $6 \ge n = 5$, $7 \ge cc \le c$ く異なっていた. C_4^- , C_6^- は再帰蛍光で速やか に冷却し, C_5^- , C_7^- については脱離しきい値以 上では depletion cooling, 低い内部エネルギー 領域では振動輻射冷却が支配的であった. この 結果は各負イオンの電子構造の違いにより説明 が可能であった.

偶数炭素クラスター負イオンが再帰蛍光過程 で冷えているということを直接証明するために は,放出された光を見ればよい.最近,我々は C₆のRF光子の検出に成功した[50].現在はそ の他の分子についてRF活性イオンの探索を行 うとともに,RF光子のより詳細な性質につい て調べている.これらも発光測定というリング を使った新しい実験展開であり,再び国際的競 争がスタートした.その新しい結果については, また機会があればまとめて報告したい.

TMU E-ring 実験は都立大,首都大の原子物 理実験研究室,反応物理化学研究室に所属する 多くのメンバーによって行われてきた.ここで 全ての方々の名前をあげることは不可能なので, 特に本稿に関係した研究を論文として発表した 大学院生の後藤基,伊藤源,江原悠太,河野直 子各氏の名前を代表として挙げさせていただき 感謝の意を表したい.理論的な枠組みは共同研 究者であるイエテボリ大学(現所属は天津大学) の Klavs Hansen 氏が構築したもので,式の誘 導は文献 [11] に倣っている.

首都大における E-ring 実験は 2002 年度の東 京都特殊備品費と,その後の科学研究費補助金, および学内の各種傾斜的研究費により支援して いただいた.

補遺 A 中性粒子収率曲線のべき乗則

ある内部エネルギーの負イオン数をN(E),反応速度定数を $k_{d}(E)$ とすると、単位時間当たりの中性粒子の収量 γ は $N_{0}(E)$ を初期数として

$$\gamma(E,t) = -\mathrm{d}N(E)/\mathrm{d}t$$
$$= N_0(E)k_\mathrm{d}(E)\mathrm{e}^{-k_\mathrm{d}(E)t}$$

で与えられる.内部エネルギーに広がりがある 場合は

$$\gamma(t) = \int N_0(E) k_{\rm d}(E) \mathrm{e}^{-k_{\rm d}(E)t} \mathrm{d}E$$

である.エネルギー幅が極端に広く,問題にしている区間 $E_{\rm a} \sim E_{\rm b}$ でほぼ均一に分布している場合 $N_0(E)$ は定数 (N_0) とおいて

$$\gamma(t) = N_0 \int k_{\rm d}(E) \mathrm{e}^{-k_{\rm d}(E)t} \mathrm{d}E \qquad (A1)$$

と書ける. ここで煩雑さを避けるため, $k_{d}(E)$ は単に k_{d} と表記する. k_{d} に対して $k_{d}e^{-k_{d}t}$ は $k_{d} = t^{-1}$ に鋭いピークをもつ関数であることか ら, この積分が t^{-1} に比例することは先の解説 で示した. ここではもう少し高い近似を説明す る. まず式 (A1) 中の積分を以下のように変形 する.

 $\int k_{\rm d} e^{-k_{\rm d}t} dE = \int k_{\rm d} e^{-k_{\rm d}t} \frac{dE}{d\ln k_{\rm d}} \frac{d\ln k_{\rm d}}{dk_{\rm d}} dk_{\rm d}$ $d\ln k_{\rm d}/dk_{\rm d} = 1/k_{\rm d} なので, この積分は$

$$\int \mathrm{e}^{-k_{\mathrm{d}}t} \frac{\mathrm{d}E}{\mathrm{d}\ln k_{\mathrm{d}}} \mathrm{d}k_{\mathrm{d}}$$

と書くことができる.指数部に比べて対数で微 分する項は変化が小さい.また先述したように, 被積分関数は $k_d = t^{-1}$ でピークをもつので, ピー ク値で固定して積分の外に出し, $k_d = 0 \sim \infty$ の 区間で積分を実行すると,

$$\frac{\mathrm{d}E}{\mathrm{d}\ln k_{\mathrm{d}}} \bigg]_{k_{\mathrm{d}}=1/t} \times \int \mathrm{e}^{-k_{\mathrm{d}}t} \mathrm{d}k_{\mathrm{d}}$$
$$= \frac{\mathrm{d}E}{\mathrm{d}\ln k_{\mathrm{d}}} \bigg]_{k_{\mathrm{d}}=1/t} \times \frac{1}{t}$$

となり, 微分の項がべき乗則の補正項になる.こ の計算は逆数で実行した方が容易である.アレ ニウス型の速度定数 $k_d = Ae^{-E_a/k_BT}$ を用い,比 熱を使って温度を内部エネルギーに変換すると

$$\frac{\mathrm{dln}k_{\mathrm{d}}}{\mathrm{d}E} = \frac{\mathrm{d}}{\mathrm{d}E} \ln \left(A \mathrm{e}^{-E_{\mathrm{a}}/k_{\mathrm{B}}T}\right)$$
$$= \frac{\mathrm{d}}{\mathrm{d}E} \left(-E_{\mathrm{a}}/k_{\mathrm{B}}T\right)$$
$$= -\frac{E_{\mathrm{a}}C_{\mathrm{v}}}{k_{\mathrm{B}}} \frac{\mathrm{d}}{\mathrm{d}E} \frac{1}{E} = \frac{E_{\mathrm{a}}C_{\mathrm{v}}}{k_{\mathrm{B}}E^{2}}$$

ここで温度を使えば

$$\mathrm{dln}k_{\mathrm{d}}/\mathrm{d}E = E_{\mathrm{a}}/k_{\mathrm{B}}C_{\mathrm{v}}T^{2}$$

である. $k_{\rm d} = A {\rm e}^{-E_{\rm a}/k_{\rm B}T} = 1/t$ の条件を入れる と $E_{\rm a}/k_{\rm B}T = \ln(At)$ より

$$\begin{aligned} \frac{\mathrm{d}E}{\mathrm{d}\ln k_{\mathrm{d}}} \end{bmatrix}_{k_{\mathrm{d}}=1/t} &= \left\{ \frac{E_{\mathrm{a}}}{k_{\mathrm{B}}C_{\mathrm{v}}} \frac{k_{\mathrm{B}}^{2}}{E_{\mathrm{a}}^{2}} \mathrm{ln}^{2}(At) \right\}^{-1} \\ &= \frac{C_{\mathrm{v}}E_{\mathrm{a}}}{k_{\mathrm{B}}\mathrm{ln}^{2}(At)} \end{aligned}$$

となる. 従って式 (A1) は以下のように書くこ とができる.

$$\gamma(t) = N_0 t^{-1} \frac{C_{\rm v} E_{\rm a}}{k_{\rm B} \ln^2(At)} \propto \frac{t^{-1}}{\ln^2(At)}$$

分母のため,傾きは –1 より少し急になる.こ こで,比熱が十分大きくないときは電子脱離の 前後で温度が大きく異なる.詳細釣合の原理を 考えると,実効的な温度がδT下がり,これを補 正すると

$$k'_{\rm d} = A \mathrm{e}^{E_{\rm a}/k_{\rm B}(T-\delta T)} = k_{\rm d}^{(T-\delta T)}$$

となる. 逆数関係から $(t')^{-1} = t^{-T/(T-\delta T)}$ となり, べき数がさらに小さく (負の大きな値に)なる. C_5^- の場合,高温の比熱を使うと,べき数は -1.21となり,実測値の -1.26とよく一致する [19].

補遺 B 球対称井戸型ポテンシャルにお ける状態密度

3次元の井戸型ポテンシャルのエネルギー

$$\epsilon = \frac{\hbar^2 \pi^2}{2mL^2} (n_x^2 + n_y^2 + n_z^2)$$

から出発し,単位エネルギーあたりの状態数を求 める.まず特定のエネルギー以下の (n_x, n_y, n_z) の組み合わせの数,つまり n_x, n_y, n_z を座標軸と して,

$$\frac{2mL^2\epsilon}{\hbar^2\pi^2} \ge n_x^2 + n_y^2 + n_z^2$$

を満たす格子点を数えればよい.量子数は十分 に大きい値となるので,格子点の数は

$$r = (n_x^2 + n_y^2 + n_z^2)^{1/2} = \frac{(2m\epsilon)^{1/2}L}{\hbar\pi}$$

を半径とする球の体積に近似できるが,量子数 が正の数であるという条件を入れると球の体積 の 1/8 になる.従って,状態数を $N(\epsilon)$, $L^3 = V$ とすると

$$N(\epsilon) = \frac{1}{8} \frac{4\pi}{3} \frac{(2m\epsilon)^{3/2} L^3}{\hbar^3 \pi^3} = \frac{1}{6} \frac{(2m)^{3/2} V}{\hbar^3 \pi^2} \epsilon^{3/2}$$

であり、状態密度 ho_{e^-} は

$$\frac{\mathrm{d}N(\epsilon)}{\mathrm{d}\epsilon} = \frac{3}{2} \frac{1}{6} \frac{(2m)^{3/2}V}{\hbar^3 \pi^2} \epsilon^{1/2} = \frac{m^{3/2}V\epsilon^{1/2}}{2^{1/2}\hbar^3 \pi^2}$$

で与えられる.

補遺 C 振動子強度と蛍光の速度定数に 係る多重度の取り扱い

下の準位を 0, 上の準位を n とラベルする.吸 収についての振動子強度 f_{0n} について,始状態 に縮重がある場合は分布関数に反映されるので 平均し,終状態については和を取る (重みを掛 ける).例えば 0 状態が g_0 重, n 状態が g_n 重に 縮重しているとすると, $g_0f_{0n} = -g_nf_{n0}$ の関係 がある.符号はエネルギー差の項によるもので あるが,ここから先は符号を無視する.「一般 に $f_{0n} \neq f_{n0}$ となるのが気持ち悪いので, gf の 値を示すことが多い」と教科書には書いてある が,これは必ずしも守られていない.発光につ いて, A 係数と振動子強度の関係は以下のとお りである.

$$A_{n0} = \frac{2\omega_{n0}^2}{m_e c^3} \frac{e^2}{4\pi\epsilon_0} f_{n0} = \frac{2\omega_{n0}^2}{m_e c^3} \frac{e^2}{4\pi\epsilon_0} \frac{g_0}{g_n} f_{0r}$$

吸収強度から発光のA係数を出す場合は多重度 の比を掛ける必要がある.ただし理論の論文で は、縮重があっても計算上は別の関数になって いるので、それぞれに振動子強度が求まり、そ れをそのまま書いてあることも多い.

参考文献

- [1] 城丸春夫,東俊行,しょうとつ 10, 33 (2013).
- [2] S. P. Møller, Nucl. Instr. Methods Phys. Res. A **394**, 281 (1997).
- [3] T. Tanabe and K. Noda, Nucl. Instrum. Methods Phys. Res. A 496, 233 (2003).
- [4] S. Jinno *et al.*, Nucl. Instrum. Methods Phys. Res. A **532**, 477 (2004).
- [5] J. Bernard *et al.*, Rev. Sci. Instrum. **79**, 075109 (2008).
- [6] H. T. Schmidt, Phys. Scr. **T166**, 014063 (2015).
- [7] H. T. Schmidt *et al.*, Rev. Sci. Instrum.
 84, 055115 (2013).
- [8] K. Stiebing *et al.*, Nucl. Instrum. Methods Phys. Res. A **614**, 10 (2010).
- [9] R. von Hahn *et al.*, Nucl. Instrum. Methods Phys. Res. B 269, 2871 (2011).
- [10] Y. Nakano *at al.*, Rev. Sci. Instrum. 88, 033110 (2017).
- [11] M. A. El Ghazaly *et al.*, Appl. Math. Inf. Sci. **3**, 301 (2009).
- [12] A. Chutjian *et al.*, J. Phys. Conf. Ser.635, 032099 (2015).
- [13] H. B. Pedersen *et al.*, Rev. Sci. Instrum.
 86, 063107 (2015).
- [14] http://phys.au.dk/forskning/ forskningsomraader/atomar-molekylaerog-optisk-fysik/x-ring/

- [15] K. Hansen, Statistical physics of nanoparticles in the gas phase (Springer, Dordrecht, 2013).
- [16] M. Goto *et al.*, Phys. Rev. A 87, 033406 (2013).
- [17] G. Ito *et al.*, Phys. Rev. Lett. **112**, 183001 (2014).
- [18] A. E. K. Sundén *et al.*, Phys. Rev. Lett. 103, 143001 (2009).
- [19] M. Goto *et al.*, J. Chem. Phys. **139**, 054306 (2013).
- [20] K. Najafian *et al.*, J. Chem. Phys. **140**, 104311 (2014).
- [21] T. Furukawa *et al.*, Nucl. Instr. Methods Phys. Res. B **354**, 192 (2015).
- [22] N. Kono *et al.*, Phys. Chem. Chem. Phys. 17, 24732 (2015).
- [23] Y. Zhao *et al.*, J. Chem. Phys. **105**, 4905 (1996).
- [24] C. Frischkorn *et al.*, J. Chem. Phys. **115**, 11185 (2001).
- [25] A. E. Bragg et al., J. Chem. Phys. 121, 3515 (2004).
- [26] A. Van Orden and R. J. Saykally, Chem. Rev. 98, 2313 (1998).
- [27] E. K. Campbell *et al.*, Nature **523**, 322 (2015).
- [28] T. J. Millar *et al.*, Chem. Rev. **117**, 1765 (2017).
- [29] J. Cernicharo *et al.*, Astron. Astrophys. 467, L37 (2007).
- [30] M. C. McCarthy *et al.*, Astrophys. J. **652**, L141 (2006).
- [31] S. Brünken *et al.*, Astrophys. J. **664**, L43 (2007).
- [32] M. Larsson *et al.*, Rep. Prog. Phys. **75**, 066901 (2012) and references therein.
- [33] N. Bohr and J. A. Wheeler, Phys. Rev. 56, 426 (1939).
- [34] V. Weisskorp, Phys. Rev. **52**, 295 (1937).
- [35] A. E. Douglas, J. Chem. Phys. 45, 1007

(1966).

- [36] A. Nitzan and J. Jortner, J. Chem. Phys. 71, 3524 (1979).
- [37] Z. Karny *et al.*, Chem. Phys. **37**, 15 (1979).
- [38] J. Y. Tsao *et al.*, J. Chem. Phys. **75**, 1 (1981).
- [39] A. Léger *et al.*, Phys. Rev. Lett. **60**, 921 (1988).
- [40] P. Boissel *et al.*, J. Chem. Phys. **106**, 4973 (1997).
- [41] S. Martin *et al.*, Phys. Rev. Lett. **110**, 063003 (2013).
- [42] M. Wolf *et al.*, Astrophys. J. **832**, 24 (2016).
- [43] M. Ji et al., J. Chem. Phys. 146, 044301 (2017).
- [44] J. U. Andersen *et al.*, Eur. Phys. J. D 17, 189 (2001).
- [45] V. Chandrasekaran *et al.*, J. Phys. Chem. Lett. 5, 4078 (2014).
- [46] J. Fedor *et al.*, Phys. Rev. Lett. **94**, 113201 (2005).
- [47] A. P. O'Connor *et al.*, Phys. Rev. Lett. 116, 113002 (2016).
- [48] C. Meyer *et al.*, Phys. Rev. Lett. **119**, 023202 (2017).
- [49] H. T. Schmidt *et al.*, Phys. Rev. Lett. 119, 073001 (2017).
- [50] Y. Ebara *et al.*, Phys. Rev. Lett. **117**, 133004 (2016).

2017 年度 役員·委員会

会長

東俊行 (理化学研究所)

幹事

長嶋泰之	(東京理科大学)	〔副会長〕	北島昌史	(東京工業大学)
酒井康弘	(東邦大学)		中野祐司	(立教大学)
菱川明栄	(名古屋大学)			

運営委員

足立純一	(高エネルギー加速器研究機構)	岡田邦宏	(上智大学)
髙橋正彦	(東北大学)	星野正光	(上智大学)
中野祐司	(立教大学)	中村信行	(電気通信大学)
菱川明栄	(名古屋大学)	佐甲徳栄	(日本大学)
平山孝人	(立教大学)	小田切丈	(上智大学)
渡部直樹	(北海道大学)	本橋健次	(東洋大学)
長嶋泰之	(東京理科大学)	北島昌史	(東京工業大学)

常置委員会

編集委員会	委員長:北島昌史	(東京工業大学)
行事委員会	委員長:菱川明栄	(名古屋大学)
広報渉外委員会	委員長:酒井康弘	(東邦大学)
顕彰委員会	委員長:長嶋泰之	(東京理科大学)
庶務委員会	委員長:中野祐司	(立教大学)

編集委員 五十嵐明則, 岡田邦宏, 北島昌史, 高口博志, 冨田成夫, 中井陽一, 彦坂泰正, 間嶋拓也, 山崎優一

THE ATOMIC COLLISION SOCIETY OF JAPAN しょうとつ 第15巻第2号 (通巻81号) Journal of Atomic Collision Research ©原子衝突学会2018 http://www.atomiccollision.jp/ 発行:2018年3月15日 配信: 原子衝突学会事務局 <<u>acr-post@bunken.co.jp</u>>