

Vol.**18** Issue**5** 2021

解説

イオンと原子・分子の電離及び電荷移行衝突における微分断面積 五十嵐明則

原子衝突学会 www.atomiccollision.jp

原子衝突学会賛助会員(五十音順)

アイオーピー・パブリッシング・リミテッド (IOP 英国物理学会出版局)

Institute of Physics

http://iopscience.iop.org/

アドキャップバキュームテクノロジー株式会社

http://www.adcap-vacuum.com

有限会社イーオーアール

Electronics Optics Research Ltd.

http://www.eor.jp/

イノベーションサイエンス株式会社

株式会社オプティマ

Optima Corp.

http://www.optimacorp.co.jp/

http://www.innovation-science.co.jp/

http://www.enago.jp/ http://ulatus.jp/ http://www.voxtab.jp/

https://www.cosmotec-co.jp/

研究支援エナゴ の Author First, Quality First

クリムゾン インタラクティブ・ジャパン

コスモ・テック株式会社

cosmotec

株式会社サイエンス ラボラトリーズ

http://www.scilab.co.jp/

真空光学株式会社

空光学株式会社-Vacuum & Optical Instruments-

http://www.shinku-kogaku.co.jp/

スペクトラ・フィジックス株式会社

A Newport Company ソーラボジャパン株式会社 http://www.spectra-physics.jp/

http://www.thorlabs.jp/

株式会社東京インスツルメンツ

株式会社ナバテック

仁木工芸株式会社

伯東株式会社

http://www.navatec.co.jp/

http://www.nikiglass.co.jp/

http://www.g5-hakuto.jp/

^原子衝突学会誌 しようとつ 第18巻第5号

目 次

解説 イオンと原子・分子の電離及び電荷移行衝突における微分断面積	五十嵐 明則	106
第46回原子衝突学会年会(オンライン)参加登録・講演申込開始	のお知らせ 行事委員会委員長	118
日本表面真空学会主催の国際シンポジウムと国内学術講演会のお	お知らせ 広報渉外委員会委員長	118
第23回原子衝突学会若手奨励賞募集要項	顕彰委員会委員長	119
2021 年度原子衝突学会学生発表奨励賞 募集要項	顕彰委員会委員長	119
「しょうとつ」原稿募集	編集委員会事務局	120
ユーザー名とパスワード		121

イオンと原子・分子の電離及び電荷移行衝突における微分断面積

五十嵐 明則 宮崎大学工学部 〒 889-2192 宮崎県宮崎市学園木花台西 1-1 igarashi@phys.miyazaki-u.ac.jp 令和3年7月13日原稿受付

冷却標的反跳イオン運動量分析法の開発により,様々な多重微分断面積が測定され,理論計算との検 討がなされてきている.本稿では,核子当たり数十 keV 以上のイオンと水素原子,ヘリウム,水素分子と の衝突における電離過程や電子捕獲過程について,最近の話題を紹介する.

1. はじめに

荷電粒子と原子や分子の衝突過程で起こる衝 突過程は、複雑で強い相関を示すクーロン少数 多体系を研究するために適した対象である.これ らの衝突機構の解明は、プラズマ物理、材料科学、 宇宙物理、放射線生物学の研究においても重要 である.例えば、高エネルギー陽子線や炭素ビ ームによる粒子線がん治療では、高速イオンによ る直接的な損傷過程以外に、イオン軌跡に沿っ て生体構成物質から生成される二次電子の運動 量分布が重要な基礎データになっている.

1990年代の半ばから報告されるようになっ た冷却標的反跳イオン運動量分析法(cold target recoil ion momentum spectroscopy, COLTRIMS)の 発展により、様々な多重微分断面積が報告される ようになり、複雑なクーロン少数多体系の衝突機 構の詳細についての議論が可能になってきてい る [1,2]. COLTRIMSでは、散乱イオンの運動量 を測定する代わりに、電離した標的イオン(反跳イ オン)の運動量を測定する.飛行時間法と二次元 検出器を併用することで、生成荷電粒子の運動 量が測定できる.標的粒子の熱運動による運動 量が無視できるほど小さいことが、衝突後の生成 粒子の運動量解析のために必要になる.

本稿では、電離衝突を例に COLTRIMS で用い られる運動学と、衝突計算の概要について説明し た後、電離における微分断面積(水素分子とへ リウム原子)、水素分子からの解離性電子捕獲過 程の実験データと理論計算の比較例を示す.

2. COLTRIMS の運動学

電子をまとわない入射イオンによる,標的(原子 または分子)の単電離を例に,実験室系での運動 量保存とエネルギー保存を考える. 今後,特に断 らないかぎり,原子単位を用いる. 入射イオンと標 的イオンの質量を M_p, M_T , 衝突前の入射イオン の運動量を K_i ,標的(標的イオン+電子)の運動 量を κ とする. 衝突後の入射イオン,反跳イオ ン,電離電子の運動量をそれぞれ, K_f , p_r , kとする. 運動量の保存則とエネルギー保存則は

$$K_{i} + \kappa = K_{f} + p_{r} + k, \qquad (1)$$

$$\frac{K_{i}^{2}}{2M_{P}} + \frac{\kappa^{2}}{2(M_{T} + 1)} + \epsilon = \frac{K_{f}^{2}}{2M_{P}} + \frac{p_{r}^{2}}{2M_{T}} + \frac{k^{2}}{2} + \epsilon' \qquad (2)$$

書ける. ここで, ϵ と ϵ' は, 標的と標的イオンの 内部状態のエネルギーである. 標的は十分冷や されていて $\kappa \sim 0$ が成立し, k, $p_r \sim 1$ 程度の 電離過程を観測するとする. イオンの質量が電子 質量よりずっと大きいことから, (1), (2) 式は,

$$\boldsymbol{q} \simeq \boldsymbol{p}_r + \boldsymbol{k}$$
, $\frac{K_i^2}{2M_P} - \frac{K_f^2}{2M_P} \simeq \Delta \epsilon$ (3)

となる. ここで, $q = K_i - K_f$ は入射イオンの運動量移行, $\Delta \epsilon = \epsilon' - \epsilon + k^2/2$ は入射イオンの エネルギー損失である.

入射イオンの散乱方向 $d\Omega_P(\theta_p, \phi_p)$, 放出電 子のエネルギー($\epsilon_k = k^2/2$), 及び放出方向 $d\Omega_k(\theta_k, \phi_k)$ についての単電離 3 重微分断面積 $d^3\sigma/d\epsilon_k d\Omega_k d\Omega_n$ の測定では、衝突後の散乱イ オンの運動量 (K_f), 電離電子の運動量(k), 及 び 反跳イオンの運動量 (p_r) のうち2つの運動 量を同時測定し,残りのもう一つは運動量保存か ら導出する. 測定する 2 つの運動量組み合わせ は, 方法1: $K_{\rm f}$ と k を測定, 方法2: $p_{\rm r}$ と **k** を測定, 方法 3: **p**_r と **K**_f を測定の 3 通り ある [2]. 方法1 は、電子衝突に対して用いら れているが、イオン衝突では行われていない. 電 子衝突の3重微分断面積は、イオン衝突に比べ、 実験と理論の一致は良好である [2]. イオン衝突 では、イオンが電子に比べて数千倍以上重く散 乱角が小さいことと, エネルギー損失が入射イオ ンのエネルギーに比べ小さいため, K_f を精度よ く測定することが難しくなる. そのため, イオン衝 突の場合には、方法2によって行われることが多 い. 方法3 は 75 keV 陽子入射についてのみ報 告例があるが、入射イオンの質量やエネルギー が大きくなると、散乱されたイオンの運動量の測定 が難しくなる.

3. 衝突計算

イオン衝突によるヘリウムと水素分子の単電離 過程の3重微分断面積の計算に対してよく用いら れている,1電子近似の枠内での CDW-EIS (continuum distorted wave – eikonal initial state) 近似と言われる歪波近似を説明する[3].

3.1 ヘリウムの単電離

ヘリウム原子のイオン衝突による単電離3重微 分断面積の計算について説明する.座標は図1 のように取る.

図 1: 座標系. P, T, e は入射イオン, 標的核, 電離する電子を表す.

1 keV を超えるイオン衝突では、入射イオンの ド・ブロイ波長がボーア半径よりずっと短くなり、入 射イオンと標的間の相対運動は古典的に扱い、 電子については量子論的に扱う半古典的法が良 い近似になる.入射イオンの標的核からの相対 運動は、等速直線運動 R = b + vt で記述され る.ここで、v はイオンの入射速度で、b は衝突 径数ベクトルである.入射方向を z 軸に取れば、 b は xy 面内にある.

有効ポテンシャルをV_e(r) として, 遷移する電子の原子軌道のハミルトニアンを

$$h_1 = -\frac{1}{2} \overline{V}_r^2 + V_e(r)$$

とする. 始状態の ls 波動関数を φ_{1s} (エネルギ ー ϵ_i), 運動量 k の電離電子の波動関数を φ_k (エネルギー $\epsilon_k = k^2/2$) とする. 入射イオンの電 荷が Z_p のときの l 電子ハミルトニアンを

$$H_1 = h_1(r) - Z_P/s$$

と近似する. CDW-EIS 近似では,始状態の歪波 波動関数を

$$\xi_i = e^{-i\epsilon_i t} \varphi_{1s}(\mathbf{r}) D_E(s)$$

と取る. $D_E(s)$ は、入射イオンによる標的内電子の歪みを記述する因子である. 終状態の電離状態の歪波波動関数は

$$\xi_k = e^{-i\epsilon_k t} \varphi_k(\mathbf{r}) D_P(\mathbf{s})$$

と取る. D_p は電離した電子が入射イオンから受ける歪みを記述している. $\varphi_k(\mathbf{r})$ には, V_e が考慮されている. 衝突径数 b での, 運動量 k の電離状態への遷移振幅は,

$$T_{\boldsymbol{k}}(\boldsymbol{b}) = e^{-i\chi_1(b)} \, \tilde{T}_k(\boldsymbol{b})$$

と書ける [4]. ここで,

$$\chi_{1}(b) = \int_{-\infty}^{+\infty} V_{1}(t) dt , \qquad (4)$$
$$\tilde{T}_{k}(\mathbf{b}) = -i \int_{-\infty}^{+\infty} \left\langle \xi_{k} \left| \left(H_{1} - i \left(\frac{\partial}{\partial t} \right)_{\mathbf{r}} \right) \xi_{i} \right\rangle dt \qquad (5)$$

である. (4) 式の $V_1(R)$ は, 入射イオンとヘリウム イオン間の有効ポテンシャルで,

$$V_1(R) = \int d\mathbf{r} |\varphi_{1s}(r)|^2 \left(\frac{Z_P}{R} - \frac{Z_P}{|\mathbf{R} - \mathbf{r}|}\right)$$

とする. 運動量移行ベクトルを

原子衝突学会誌しょうとつ 第18巻第5号 (2021)

107 ② 2021 原子衝突学会

$$\boldsymbol{q} = \boldsymbol{q}_{\perp} + q_z \, \hat{\boldsymbol{v}} \,, \quad q_z = (\epsilon_k - \epsilon_i) / \boldsymbol{v}$$

として, 散乱振幅 は

$$f_k(\boldsymbol{q}) = \frac{1}{2\pi} \int d\boldsymbol{b} \, e^{i\boldsymbol{q}_\perp \cdot \boldsymbol{b}} \, e^{-i\chi_1(b)} \, \tilde{T}_k(\boldsymbol{b}) \tag{6}$$

と書ける. 入射イオンの散乱方向 $(d\Omega_P)$, 電離電 子のエネルギー (ϵ_k) と放出方向 $(d\Omega_k)$ についての 3 重微分断面積は

$$\frac{\mathrm{d}^3\sigma}{\mathrm{d}\Omega_{\mathrm{P}}\mathrm{d}\epsilon_k\mathrm{d}\Omega_k} = N_e(M_P\nu)^2k |f_k(\mathbf{q})|^2$$

となる. N_e (= 2) はヘリウムが同等な 1s 電子を 2 つ持つことを考慮する因子である. q_{\perp} は q の xy 面への射影ベクトルで, その大きさは入射イオ ンの散乱角 θ_P と $q_{\perp} = 2M_P v \sin(\theta_P/2)$ の関 係がある.

CDW-EIS 近似は, 経験的に $Z_P/v \leq 1$ のときに実験結果を良く再現する.

3.2 水素分子の単電離

電荷 Z_P のイオン (P) による水素分子の単電 離過程を, 電離する電子だけを陽に扱う1 電子近 似を用いる. 座標は 図2 のように取る.

図 2:1 電子近似でのイオン(P) と水素分子系の 座標.

標的の水素分子の二つの陽子を p_1, p_2 で表 し、分子軸 ρ は衝突中に静止しているものとする (核固定近似、 $\rho = 1.4$ 平衡距離). 分子軸の中 点から測った電子の位置ベクトルを \mathbf{r} ,入射イ オンP からの電子の位置ベクトルを \mathbf{s} とする. 入 射イオンPの分子軸の中点からの相対座標R は、 古典的な等速直線運動 R = b + vt によって記 述する.

P+H2 系の電子ハミルトニアンを

$$H_2 = h_2(\mathbf{r}, \boldsymbol{\rho}) - Z_P/s$$

原子衝突学会誌しょうとつ 第18巻第5号 (2021)

と近似する. ここで, $h_2(\mathbf{r}, \mathbf{\rho})$ は, 水素分子内 の有効 1 電子ハミルトニアンである. 始状態の 1so 分子軌道を $\psi_i(\mathbf{r}, \mathbf{\rho})$, 運動量 \mathbf{k} の電離状 態を $\psi_{\mathbf{k}}(\mathbf{r}, \mathbf{\rho})$ とし, それらのエネルギーを ϵ_i , $\epsilon_k = k^2/2$ とする. CDW-EIS 近似では, 始状態, 終状態に対する歪波波動関数を

$$u_{i} = e^{-i\epsilon_{i}t} \psi_{1s\sigma}(\mathbf{r}, \boldsymbol{\rho}) D_{E}(s),$$
$$u_{k} = e^{-i\epsilon_{k}t} \psi_{k}(\mathbf{r}, \boldsymbol{\rho}) D_{P}(\boldsymbol{k}, \boldsymbol{s})$$

と取る [5]. 衝突径数 **b**の電離過程に対する遷移 振幅は

$$T_{k}(\mathbf{b}, \boldsymbol{\rho}) = e^{-i\chi_{2}(\mathbf{b}, \boldsymbol{\rho})} \tilde{T}_{k}(\mathbf{b}, \boldsymbol{\rho}) ,$$

$$\chi_{2} = \int_{-\infty}^{+\infty} dt \ V_{2}(t) ,$$

$$\tilde{T}_{k}(\mathbf{b}, \boldsymbol{\rho}) = -i \int_{-\infty}^{+\infty} \left\langle u_{k} \right| \left(H_{2} - i \left(\frac{\partial}{\partial t} \right)_{r} \right) u_{i} \right\rangle dt$$

と書ける. ここで, 入射イオン と H₂イオンとの 有効ポテンシャルを

$$V_2(\boldsymbol{R},\boldsymbol{\rho}) = \int d\mathbf{r} |\psi_{1s\sigma}(\boldsymbol{r},\boldsymbol{\rho})|^2 \left(\frac{Z_P}{R_1} + \frac{Z_P}{R_2} - \frac{Z_P}{|\mathbf{R}-\mathbf{r}|}\right)$$

としている. 始状態の1sσ 軌道の波動関数を

$$\psi_{1s\sigma} = N_i \left(\zeta_{1s}(r_1) + \zeta_{1s}(r_2) \right), \tag{7}$$

$$\zeta_{1s}(x) = \sqrt{Z_T^3/\pi} \ e^{-z_T x}$$

(N_i:規格化定数,Z_T:有効電荷) と表すと,

$$\tilde{T}_{k}(\boldsymbol{b},\boldsymbol{\rho}) = N_{i} \left(\tilde{T}_{k}^{(1)}(\boldsymbol{b},\boldsymbol{\rho}) + \tilde{T}_{k}^{(2)}(\boldsymbol{b},\boldsymbol{\rho}) \right)$$
(8)

となる. ここで,

$$\widetilde{\boldsymbol{T}}_{\boldsymbol{k}}^{(j)}(\boldsymbol{b},\boldsymbol{\rho}) = \\ -i \int_{-\infty}^{+\infty} dt \ e^{i\omega t} \left\langle \psi_{\boldsymbol{k}} D_{\boldsymbol{p}} \middle| \mathcal{W}_{\boldsymbol{r}} \zeta_{1s}(\boldsymbol{r}_{j}) D_{\boldsymbol{E}} \right\rangle_{\boldsymbol{r}} , \\ \mathcal{W}_{\boldsymbol{r}} \zeta_{1s}(\boldsymbol{r}_{j}) D_{i} \equiv \\ \left[\frac{1}{2} \zeta_{1s}(\boldsymbol{r}_{j}) \nabla_{\boldsymbol{s}}^{2} D_{\boldsymbol{E}} + (\nabla_{\boldsymbol{r}} \zeta_{1s}) \cdot (\nabla_{\boldsymbol{s}} D_{\boldsymbol{E}}) \right] ,$$

 $\omega=\epsilon_k-\epsilon_i$

である. さらに, (8) 式の評価を簡単にするため, 有効 2 中心近似 (Two effective center (TEC)近似)を適用し[6,7], $\tilde{T}_{k}^{(j)}(\boldsymbol{b},\boldsymbol{\rho})$ (*j* = 1,2) の各項で

$$\psi_k(\boldsymbol{b}, \boldsymbol{\rho}) \to (2\pi)^{-3/2} e^{i\boldsymbol{k}\cdot\boldsymbol{r}} D^{Z_e}(\boldsymbol{k}, \boldsymbol{r}_i) \qquad (9)$$

108 © 2021 原子衝突学会 の置き換えを行う[8]. $D^{Z_e}(k, r_j)$ は、電離した電 子が陽子 p_j に置いた有効電荷 Z_e による歪み を記述する関数である[8]. TEC 近似では、 陽子 p_1 に中心にもつ ls 軌道 $\zeta_{1s}(r_1)$ から電離した電 子には p_1 からの有効クーロン力が働き、 陽子 p_2 に中心にもつ ls 軌道 $\zeta_{1s}(r_2)$ から電離した電 子には p_2 からの有効クーロン力が働くものとし ている.

TEC 近似の結果, (8) 式は

$$\widetilde{T}_{k}(\boldsymbol{b},\boldsymbol{\rho}) = e^{-i\Lambda}\mathcal{T}_{k}(\boldsymbol{b}_{1}) + e^{i\Lambda}\mathcal{T}_{k}(\boldsymbol{b}_{2}), \qquad (10)$$
$$\Lambda = (q_{z}\,\hat{v} - \boldsymbol{k}) \cdot \boldsymbol{\rho}, \ q_{z} = (\epsilon_{k} - \epsilon_{i}) / v$$

となる. (10) 式の b_1, b_2 は, それぞれ R_1, R_2 の xy 面への射影である. $\mathcal{T}_k(b_j)$ (j = 1,2) は, 擬水素原子 $\zeta_{1s}(r_j)$ に対する電離遷移振幅で, (4) 式のように書ける. 散乱振幅は,

$$F_{k}(\boldsymbol{q},\boldsymbol{\rho}) = N_{i}/2\pi \int d\boldsymbol{b} \ e^{i\boldsymbol{q}_{\perp}\cdot\boldsymbol{b}} \ e^{-i\chi_{2}(\boldsymbol{b},\boldsymbol{\rho})} \times \left(e^{-i\Lambda}\mathcal{T}_{k}(\boldsymbol{b}_{1}) + e^{i\Lambda}\mathcal{T}_{k}(\boldsymbol{b}_{2})\right)$$
(11)

で求まる [8].

(9), (10) 式では, 電離電子が H_2^+ から受ける 歪みについて TEC 近似を適用したが, 相対運動 の歪み $e^{-i\chi_2(b,\rho)}$ についても TEC 近似を適用す ると,

$$F'_{k}(\boldsymbol{q},\boldsymbol{\rho}) = 2N_{i} \cos\left(\frac{\boldsymbol{p}_{r}\cdot\boldsymbol{\rho}}{2}\right) f'_{k}(\boldsymbol{q}), \qquad (12)$$
$$\boldsymbol{p}_{r} = \boldsymbol{q} - \boldsymbol{k}$$

を得る [8]. $f'_k(q)$ は (6) 式と同様に,入射イオ ンによる擬水素原子 1s 軌道 ((7)式の ζ_{1s}) に対 する電離散乱振幅を表し, p_r は電離で生成した H_2^+ イオンの反跳運動量である.

(12) 式では、 $\cos(p_r \cdot \rho/2)$ により2つの擬水 素原子の散乱振幅の干渉が表され、水素分子の 計算が水素原子標的の計算程度に簡略化されて いるが、あくまで近似の結果である.

分子の向きを固定しての,入射イオンの散乱方 向,電離電子の放出方向,及びそのエネルギー についての3重微分断面積は

$$\frac{\mathrm{d}^{3}\sigma(\hat{\rho})}{\mathrm{d}\Omega_{P}d\epsilon_{k}d\Omega_{k}} = N_{e}N_{i}^{2}(M_{P}\nu)^{2}k |F_{k}(\boldsymbol{q},\boldsymbol{\rho})|^{2} \qquad (13)$$

となる. 分子の向きで平均した3 重微分断面積は

$$\frac{\mathrm{d}^3\sigma}{\mathrm{d}\Omega_{\mathrm{P}}d\epsilon_k d\Omega_k} = \frac{1}{4\pi} \int \frac{\mathrm{d}^4\sigma}{\mathrm{d}\Omega_{\mathrm{P}}d\epsilon_k d\Omega_k d\Omega_\rho} \,\mathrm{d}\Omega_\rho$$

となる. (13) 式で, F_k(q, p) の代わりに (12) 式を使うと

$$\frac{\mathrm{d}^{3}\sigma}{\mathrm{d}\Omega_{\mathrm{P}}d\epsilon_{k}\mathrm{d}\Omega_{k}} = N_{e}N_{i}^{2}I(p_{r}\rho)(M_{P}\nu)^{2}k |f_{k}'(\boldsymbol{q}_{\perp}|^{2},$$
$$I(p_{r}\rho) = 2\left(1 + \frac{\sin(p_{r}\rho)}{p_{r}\rho}\right) \tag{14}$$

となる. (14) 式では,水素分子の3 重微分断面 積が,擬水素様原子の3 重微分断面積と干渉効 果を表す項 $I(p_r\rho)$ の積として書ける.

等核2原子分子の光電離過程について,電子 配置の二中心性からくる干渉効果を指摘したのは, CohenとFanoである[9].水素分子で見られる干 渉効果は,ヤングの干渉実験に似たもので,光電 離,電子衝突,およびイオン衝突の実験で確認さ れている[10].水素分子以外でも,窒素分子, 酸素分子,一酸化炭素について干渉効果の実験 がなされている[11].

4. 陽子と水素分子の衝突

イオン衝突による水素分子の単電離の3 重微 分断面積 $(d^3\sigma/d\epsilon_k d\Omega_k d\Omega_p)$ を報告しているの は、ミズリー工科大 (MST) のグループだけで、 75 keV 陽子を入射体として用いている [2,12,13]. ここでは、主にMST グループの実験データと計 算結果の比較例を紹介する.

4.1 単電離における微分断面積

水素原子は内部状態の記述にあいまいさが無いため、衝突計算の厳密な評価ができる. 陽子と 水素分子標的のデータを示す前に、75 keV 陽子 と水素原子の衝突 (75 keV p + H 衝突)の電離に おける、陽子散乱角と電離電子エネルギーにつ いての 2 重微分断面積 $(d^2\sigma/d\epsilon_k d\Omega_p)$ を図 3 に示す. 電離電子のエネルギーは $\epsilon_k = 16.4$ eV と 36.4 eV である. CDW-EIS 近似 と、Walters 等 の緊密結合の計算結果は良く一致している [14,15]. これらの計算結果と、実験値 [16,17] は小角散乱では良く一致しているが、大角散乱で は不一致が見られる.

図 3:75 keV 陽子衝突による水素原子の電離 2 重微分断面積(DDCS). CDW-EIS [14] (黒実線), 緊密結合法 [15] (赤破線). 実験値 [16,17] (〇).

75 keV p + H₂ 衝突における電離 2 重微分断 面積($d^2\sigma/d\epsilon_k d\Omega_P$)が、電子放出エネルギー $\epsilon_k = 14.6 \text{ eV}$ から 54.6 eV で報告されている [18,19]. 実験値と計算結果を 図 4 に示す. 比 較のため, Chowdhury 等の M3DW-EIS 近似の結 果を, 図4 に含めているが,絶対値が実験値に 合うよう 4.5 倍されている [20]. M3DW-EIS 近似 は CDW-EIS 近似と似ているが, 分子の軌道を全 方向について平均し,原子標的並みの計算に軽 減化が図られている. 図4の $\epsilon_k = 14.6 \text{ eV}$ では, 理論値と実験値の一致は悪くない. ϵ_k =14.6 eV において, Alexander 等の実験[18] と M3DW-EIS の角度分布は, $\theta_P = 0.8$ rad 付近に構造を 示していているが、後に報告された Sharama 等の 実験データには、構造は見られない [19]. $\epsilon_k =$ 54.6 eV では、理論計算の微分断面積が小角散 乱で実験データより小さくなり、一致が悪くなる. この傾向は ϵ_k が大きくなるにつれて顕著になる.

図 4 の微分断面積を陽子散乱角で積分すれ ば $d\sigma/d\epsilon_k$ が得られる. $\epsilon_k = 54.6$ eV では, Alexander 等の 2 重微分断面積は,小角領域で CDW-EIS の結果より 2 倍程度大きいので, $d\sigma/d\epsilon_k$ も 2 倍程度大きくなる. Geally 等は, 20 keV から 114 keV の陽子衝突による水素分子の 電離微分断面積 ($d^2\sigma/d\epsilon_k d\Omega_k$, $d\sigma/d\epsilon_k$, $d\sigma/d\Omega_k$)を報告している [21]. 75 keV の測定はなさ れていないが, その前後の 67 keV と 95 keV の $d\sigma/d\epsilon_k$ の 実験値を 図 5 に示す. この 2 つの エネルギーで, 今回の CDW-EIS 近似の計算結 果は実験値を良く再現している. このことから, 75 keV において, CDW-EIS 近似は悪くない $d\sigma/d\epsilon_k$ を与え, 図4の Alexander 等の $\epsilon_k = 54.6 \text{ eV}$ の2 重微分断面積は2倍ほど大きすぎると思われる.

図 4:75 keV 陽子衝突による水素分子の電離 2 重微分断面積. CDW-EIS [14] (黒実線), M3DW-EIS の 4.5 倍 [20] (青破線). 実験値: [18] (○), [19] (□).

図 5:67 keV,95 keV 陽子入射による水素分子の微分断面積 (dσ/dε_k). CDW-EIS (実線). 実験値 [21] (○, ○).

原子衝突学会誌しょうとつ 第18巻第5号 (2021)

Egodapitiya 等は入射ビームの横方向 (xy 方 向)の広がり(横方向のコヒーレンス長)を,スリ ットの開口径 (a) とスリットと標的間の距離 (L) を変えることで制御できることを報告した [22]. 入射イオンのド・ブロイ波長を λ とすると, 横方向 のコヒーレンス長は $\Delta r_{\perp} = L\lambda/(2a)$ によって見 積もられる. Egodapitiya 等は p+H₂ 衝突の電 離 2 重微分断面積 ($d^2\sigma/d\epsilon_k d\Omega_P$) の測定を $\Delta r = 0.86 \ge 6.6$ の75 keV 陽子ビームを用いて 行い,陽子散乱の角度分布が変調することを示し た (図 6). Δr₁ = 6.6 は水素分子の広がりより 数倍大きいので、 $\Delta r_{\perp} = \infty$ とした通常の衝突計 算で扱うことができ、その実験データは CDW-EIS の計算 (図 6 の黒実線)に近い. Δr₁ = 0.86 の実験値は水素分子のサイズより小さいの で,通常の計算では再現できない.不確定性関 係から,波束の空間的な横広がりが小さくなると, 横方向の運動量広がりが大きくなる.

図 6: 75 keV 陽子衝突による水素分子の電離 2 重微分断面積 (ϵ_k =14.6 eV). CDW-EIS: 畳み 込みなし (黒実線), $\Delta r_{\perp} = 0.86$ で畳み込み (赤点線). 実験値 [22]: $\Delta r_{\perp} = 6.6$ (\triangle), $\Delta r_{\perp} = 0.86$ (\Box).

Feagin 等 や Sarkadi 等 は、入射イオンの横方 向の運動量分布を考慮し、*Δr* = 0.86 の実験デー タの再現を試みた [23,24]. 運動量の横成分に 広がりをもつ入射波束に対する有効2重微分断面 積は

$$\sigma_{\rm eff}^{(2)}(\boldsymbol{q}_{\perp}, \boldsymbol{\epsilon}_k) = \int d\boldsymbol{K}_{\perp} \Phi\left(\boldsymbol{K}_{\perp}\right) \times \sigma^{(2)}(\boldsymbol{q}_{\perp} + \boldsymbol{K}_{\perp}, \boldsymbol{\epsilon}_k)$$
(15)

と書ける [25 – 27]. ここで, K_i , K_f は, それぞ れ入射イオンと散乱イオンの運動量を表し, $\sigma^{(2)}(q_{\perp}, \epsilon_k)$ は 2 重微分断面積 $d^2\sigma/d\epsilon_k d\Omega_P$ を 運動量移行の横成分 q_{\perp} を使って表したものであ る.入射波束の横成分の運動量分布を表す関数 $\Phi(K_{\perp})$ は, ガウス関数により

$$\Phi(\mathbf{K}_{\perp}) = 2\Delta r_{\perp}^2 / \pi \exp(-2\Delta r_{\perp}^2 K_{\perp}^2)$$

と近似される.(15)式の有効微分断面積は、入 射イオンの横方向の運動量広がりのため、 q_{\perp} 近 傍の運動量移行 $Q_{\perp} = q_{\perp} + K_{\perp}$ の微分断面積 の畳み込み積分になっている.

(15) 式を適用すると、図 6 の赤破線が得られ、 $\Delta r_{\perp} = 0.86$ の実験データを再現することができる [8]. しかし、(15)式を使えば、MST グループが行った有限の Δr_{\perp} の実験データをいつも再現できるわけではない.

75 keV p + H₂ 衝突の電離 3 重微分断面積の 例として, 運動量移行の大きさ q = 0.71, 1.86, 電離電子のエネルギー ϵ_k = 14.6 eV における 散乱面内への電子放出角分布を 図 7 に示す [28]. 陽子の入射方向を z 軸, 入射陽子の運動

図 7:75 keV 陽子衝突による水素分子の散乱面 への電子放出に対する電離 3 重微分断面積. CDW-EIS [8](黒実線). 実験値 [28] (○).

量移行 q の xy 面への射影 q_{\perp} の方向を x 軸 としたとき, zx面を散乱面という. θ_k は電離電子 の運動量と z 軸とのなす角である.

図7のピークは $q \parallel k$ となる θ_k 付近に現わ れ,2 体衝突ピークと言われる. ピーク位置や角 度分布について,実験値と理論値の一致は良く ない. q = 0.71 では実験値と理論値の大きさに 3 倍程度の不一致が見られる. 75 keV 陽子とヘリ ウムの電離過程についても同様な不一致がある [29-31]. このような事情は他の歪波近似を用い た計算でも同様で,理論計算の間でも大きな不一 致が見られるケースもある.

実験値と理論値の不一致の解明のために,独 立したグループの実験データが望まれる. 陽子の入射エネルギー 75 keV の3 重微分断面 積に対して, CDW-EIS 近似がどれほど良いかは わからないので,信頼性の高い緊密結合法の計 算が望まれる.75 keV では電荷移行が無視できな い.

Egodapitiya 等の報告後, MST グループは, 横 方向のコヒーレンス長 (Δr) が標的サイズ程度の 75 keV 入射ビーム (非干渉性ビーム) と, 標的サ イズより大きいビーム (干渉性ビーム) の2種類を 用いて微分断面積 を測定し, その比を考察して 衝突機構を議論している [2,12,13, 及びこれらの 参考文献]. これらは, 非干渉性ビームは 2 個の 水素原子の微分断面積に対応し, 干渉性ビーム の衝突実験は水素分子の実験に対応して, その 比は水素分子標的では (14) 式の *I(pp)* に相 当するという解釈に動機付けされている. しかし, 干渉性ビームと非干渉性ビームのそれぞれの微 分断面積の実験データは, 衝突計算によりうまく 再現できないことが多い.

4.2 解離性電子捕獲

4.1 節のイオン入射による水素分子の単電離の 実験では、分子軸の方向については測定されて いない. 衝突後の解離生成イオンを捕まえること で分子の向きを指定した実験も報告されている [32-41].ここでは、

$$p + H_2(1s\sigma^2, \nu_i = 0) \rightarrow H(1s) + H_2^+(1s\sigma, \nu)$$
(16)

で起こる, 解離性電子捕獲 (dissociative electron capture, DC) と 非解離電子捕獲 (non dissociative electron capture, NDC) を考える. (16) 式の v_i , v はそれぞれ H₂(1s σ^2), H⁺₂(1s σ)の振動 量子数である.

核固定近似, 1 電子近似, 及び 有効 2 中心 近似を用いた簡単なモデルで電子捕獲衝突を扱 うと, (12) 式に対応して

$$F'_c(\boldsymbol{q}, \boldsymbol{\rho}) = 2N_i \cos(\boldsymbol{p} \cdot \boldsymbol{\rho}/2) f'_c(\boldsymbol{q}) \qquad (17)$$

$$oldsymbol{p}=oldsymbol{q}-oldsymbol{v}, \ oldsymbol{q}=(oldsymbol{q}_{\perp}$$
 , $oldsymbol{q}_z=v^2/2-0.5-\epsilon_i)$

となる. *f*_c'(**q**) は, 陽子入射による擬水素原子からの電子捕獲散乱振幅である.

(16) の衝突に対して, 分子の振動運動を考慮 する. 水素分子イオンの2つの陽子間のベクトル を ρ, 換算質量を μ とすると, H₂⁺(1sσ)の振動 状態は

$$\left(-\frac{1}{2\mu}\frac{d^2}{d\rho^2} + \mathcal{E}_{1s\sigma}(\rho)\right)\chi_{\nu}(\rho) = E_{\nu}^{1s\sigma}\chi_{\nu}(\rho)$$

を満たす ($v = 0,1,2,\cdots$). ここで, $\mathcal{E}_{1s\sigma}(\rho)$ は H⁺₂(1s σ) の断熱ポテンシャルである. 計算の簡 単化のため,

$$\chi_{\nu}(0) = \chi_{\nu}(\rho_{max}) = 0$$

を課し, $E_{\nu}^{1s\sigma}$ を離散化する. $\mathcal{E}_{1s\sigma}(\rho \to \infty) = -0.5$ なので, $E_{\nu}^{1s\sigma} > -0.5$ に対する振動状態 χ_{ν} は 連続状態を代替する. 離散化した計算の信頼性 は ρ_{max} についての結果の収束性で判断できる. 今回の計算では, $\rho_{max} \ge 10$ で安定した結果 が得られた.

(17) 式を使って, (16) の衝突の散乱振幅を

$$\mathcal{F}_{c,\nu}\left(\boldsymbol{q}, \widehat{\boldsymbol{\rho}}\right) = \int d\rho \,\chi_{\nu}(\rho) \chi_{i}(\rho) \,F_{c}'(\boldsymbol{q}, \boldsymbol{\rho}) \\ = N_{i} \,\mathcal{C}_{\nu}(\boldsymbol{p} \cdot \widehat{\boldsymbol{\rho}}) \,f_{c}'(\boldsymbol{q}), \tag{18}$$

$$C_{\nu}(\boldsymbol{p}\cdot\hat{\rho}) = 2\int d\rho \,\chi_{\nu}(\rho)\chi_{i}(\rho) \times \cos(\boldsymbol{p}\cdot\boldsymbol{\rho}/2)$$
(19)

である. 分子の向きを固定した微分断面積は

$$\frac{\mathrm{d}\sigma_{\mathrm{v}}(\hat{\rho})}{\mathrm{d}\Omega_{\mathrm{P}}} = N_{i}^{2} |\mathcal{C}_{\mathrm{v}}(\boldsymbol{p}\cdot\boldsymbol{\widehat{\rho}})|^{2} \left(\frac{\mathrm{d}\sigma_{\mathrm{c}}}{\mathrm{d}\Omega}\right)_{\mathrm{2H}'}$$

$$(d\sigma_{\rm c}/d\Omega)_{\rm 2H'} = N_e (M_{\rm P}v)^2 |f_c'(q)|^2$$

は2つの擬水素原子からの電子捕獲微分断面積 である. DC の微分断面積は

$$\frac{d\sigma_{DC}(\hat{\rho})}{d\Omega_{P}} = \sum_{\nu}' \frac{d\sigma_{\nu}(\hat{\rho})}{d\Omega_{P}}$$
$$= (\sum_{\nu}' |\mathcal{C}_{\nu}(\boldsymbol{p} \cdot \hat{\rho})|^{2}) \times N_{i}^{2} \left(\frac{d\sigma_{c}}{d\Omega}\right)_{2H'}$$
(20)

と書ける. Σ'_{ν} は, $E^{1s\sigma}_{\nu} > -0.5$ となる ν につい ての和を表す.

同様に、NDCの微分断面積 $d\sigma_{NDC}(\hat{\rho})/d\Omega_P$ は $E_{\nu}^{1s\sigma} < -0.5$ となる ν について和を取ればよい.

(20) 式 C_ν の cos(p · ρ/2) で, ρ → ρ_e (平 衡距離) と置けば

$$\frac{\mathrm{d}\sigma_{\mathrm{DC}}(\hat{\rho})}{\mathrm{d}\Omega_{\mathrm{P}}} = 4 F_{DC} \cos^{2}\left(\frac{p \cdot \rho_{e}}{2}\right) N_{i}^{2} \left(\frac{\mathrm{d}\sigma_{\mathrm{c}}}{\mathrm{d}\Omega}\right)_{\mathrm{2H}'}, \quad (21)$$
$$F_{DC} = \Sigma_{\nu}' F_{\nu}, \quad F_{\nu} = \left|\int d\rho \,\chi_{\nu}(\rho)\chi_{i}(\rho)\right|^{2}$$

となる. F_{DC} は, DC 過程についてのフランクーコ ンドン因子で $F_{DC} \simeq 0.015$ である. H⁺₂ の振動 分布を区別しない電子捕獲微分断面積は, DC と NDC の微分断面積の和であるから, $\sum_{v} F_{v} =$ 1 を使い, (21) 式で $F_{DC} \rightarrow 1$ とし,

$$\frac{\mathrm{d}\sigma_{\mathrm{c}}(\hat{\rho})}{\mathrm{d}\Omega_{\mathrm{P}}} = 4\cos^{2}\left(\frac{p\cdot\rho_{e}}{2}\right) N_{i}^{2} \left(\frac{\mathrm{d}\sigma_{\mathrm{c}}}{\mathrm{d}\Omega}\right)_{2\mathrm{H}}$$

となる. これを分子軸方向について平均すれば, 核固定近似での電子捕獲微分断面積

$$\frac{d\sigma_{\rm c}}{d\Omega_{\rm P}} = 2N_i^2 \left(1 + \frac{\sin(p\rho_e)}{p\rho_e}\right) \left(\frac{d\sigma_{\rm c}}{d\Omega}\right)_{\rm 2H'}$$
(22)

が得られる.

図8 に, 25 keV と75 keV 陽子による H₂からの電子捕獲微分断面積を示す [42,43]. 理論値は (22) 式で計算したもので,分子の向きについては平均している. 25 keV では,理論値と実験値の一致は良い. 75 keV の小角散乱では良く一致しているが, $\theta_P > 0.5$ mrad では一致は悪い.

入射方向を z 軸 ($\hat{z} \parallel \hat{v}$), \mathbf{q}_{\perp} の方向を x 軸, $\boldsymbol{v} \times \boldsymbol{q}_{\perp}$ の方向を y 軸に取る. 図 9 に, (a) $\hat{\rho} \parallel$ $\hat{x} \geq$ (b) $\hat{\rho} \parallel \hat{y}$ における 75 keV 陽子衝突の $d\sigma_{DC}(\hat{\rho})/d\Omega_{P}$ を示す. 図 9 には,分子の振動運 動を考慮した計算((20) 式), 核固定近似の計 算((21) 式),分子軸方向について平均化した 核固定近似の計算 ((22) 式) に F_{DC} を掛けた 計算結果が含まれている. 図 9 中の Lamichhane 等の実験データ [40] は絶対値ではないので, 適当にスケールしている. $\theta_P < 1$ mrad で,実験 データは計算結果よりゆっくり減少している.

図9(a) の場合には, $p \cdot \rho = q_{\perp}\rho \sim M_P v \theta_P$ が θ_P とともに増加するので,3つの計算結果に大き な違いが見られる.(20) 式の結果の振る舞いは, 核固定近似の計算(21) 式より実験データに近く, 核間の振動運動を陽に考慮することの重要性を 示している.図9(b) の場合には $p \cdot \rho = 0$ なの で,(20) 式 と(21) 式の結果は一致し,3つの計 算の微分断面積は単調に減少している.図9に は手の込んだ2電子計算の結果も示している.簡 単な(20) 式のモデル計算が2電子計算の結果 を定性的に良く再現していることが,図9(a) か らわかる.

Lamichhane 等の実験では、2eV以下の解離 した陽子を検出して分子軸を特定している.小角 散乱では、陽子運動エネルギーが小さいDCほど 寄与が大きいが、小さすぎると軸反跳近似 (axial recoil 近似) が成り立たない.このことが、散乱角 の小さいところでの理論値と実験値の不一致の一 因と思われる.

図 8: 25 keV, 75 keV 陽子入射による水素分子からの電子捕獲の微分断面積. CDW-EIS [42] (一 点波線). 実験値 [43] (〇).

原子衝突学会誌しょうとつ 第18巻第5号 (2021)

図 9:75 keV 陽子入射による水素分子の解離 性電子捕獲の微分断面積. (a) *p̂* || *x̂*. (b) *p̂* || *ŷ*. (20) 式 (黄緑実線), (21) 式 (赤点 線), (22)式 × F_{DC} (黒波線), 2 電子計算 [42] (黒実線). 実験値 [40] (〇).

5. C⁶⁺パズル

2003 年に、100 MeV/u C⁶⁺ イオンによるヘリウ ムの単電離の3 重微分断面積が Shulz 等によっ て報告された [44] .実験は2章の方法2 により 測定されている.(入射イオンの電荷)/(入射速度) ~0.1 の衝突条件なので、ボルン近似が十分妥 当と思われる.散乱面への電子放出については 期待通りボルン近似で良い一致が得られたが、yz 面の電子放出ではボルン近似の結果は桁違いに 実験値より小さくなってしまう(図10参照).歪波 近似や緊密結合計算の結果もボルン近似の結果 に近く、相対論的効果を考慮しても実験との不一 致はあまり改善されなかった [45-47].この不可 解な問題は C⁶⁺パズルと呼ばれ、多くの研究が なされている.

この不一致について、Olson 等は COLTRIMS で冷却されている標的ヘリウムの運動量分布に由 来する実験の分解能のためだとして、実験データ の不確定さを考慮した計算を行い、実験結果を良 く再現した [48-51]. つまり、(1) 式で $\kappa = 0$ とできないということであるが、Dürr 等は実験の 分解能を再検討し、Olson 等の説明を否定してい る [52]. Schulz 等や Járai-Szabó 等は,入射イオンの 散乱角に対応した衝突径数(b)を古典力学的な ポテンシャル散乱から特定し, b を通過した弾性 散乱微分断面積と,ボルン近似で求めた b にお ける電離確率との積を取ることにより,実験データ が再現できることを示した [53-55].しかし,これら の計算は理論的に受け入れ難い.

Kouzakov 等は入射イオンと標的の運動量分布 を考慮した有効微分断面積の表式を導出し,測 定法によって表式が異なることを指摘した [56,57].彼らの理論によれば,方法2の測定法 に対する有効微分断面積は入射イオンの運動量 分布によらず,標的の運動量分布を考慮する必 要がある.一方,MST で行われた75keV 陽子入 射で用いられた 方法3 の測定に対する表式は, 入射イオンと標的の運動量分布の両方が影響す る.

Gassert 等は, 1 MeV 陽子によるヘリウム原子の 単電離における電子放出に対する 3 重微分断面 積を,入射陽子の横コヒーレンス長を変えて方法 2 により測定した [58].実験結果はボルン近似 で概ね再現され,横コヒーレンス長に対する依存 性は確認されなかった.この実験結果は Kouzakov 等の理論と矛盾しない.

方法2 で測定された実験結果に対する有効微 分断面積は(15) 式と同形で, $\Delta r_{\perp} \rightarrow 1/(\sqrt{2} \Delta p_{\perp})$ と置き換えたものになっている [59,60]:

$$\sigma_{\rm eff}^{(3)}(\boldsymbol{q}_{\perp},\boldsymbol{k}) = \int d\boldsymbol{K}_{\perp} \, \sigma^{(3)}(\boldsymbol{q}_{\perp} + \boldsymbol{K}_{\perp},\boldsymbol{k}) \times (\pi \Delta p_{\perp})^{-1} \, \exp(-K_{\perp}^2 \, / \Delta p_{\perp}^2) \,.$$
(23)

 $\sigma^{(3)}(\boldsymbol{q}_{\perp},\boldsymbol{k}) = \mathrm{d}^{3}\sigma/\mathrm{d}\epsilon_{\mathrm{k}}d\Omega_{k}d\Omega_{P}$

で、 Δp_{\perp} は標的の xy 方向の運動量広がりである. この式を適用して、実験値と理論値の一致が 大きく改善される例を示す.

図 10 は 100 MeV/u C⁶⁺ + He単電離過程の zx 平面および yz 面への電子放出に関する3 重 微分断面積である [42].座標軸の方向は 4.2 節と同じく $\hat{z} \parallel v$, $\hat{x} \parallel q_{\perp}$ である. yz 面への電 子放出について,通常の計算で得られる微分断 面積 $\sigma^{(3)}(q_{\perp}, k)$ は実験値に比べ小さすぎる が, (23) 式の畳み込み積分したものは,実験値と

図 10: 100 MeV/u C⁶⁺ 入射によるヘリウムの電 離 3 重微分断面積 d³ $\sigma/dq_{\perp}d\epsilon_{k}d\Omega_{k}$ ($\epsilon_{k} = 6.5 \text{ eV. } q = 0.75$). CDW-EIS [60]: 畳み込み なし(黒実線), $\Delta p_{\perp} = 0.3$ で畳み込み(赤波 線). 実験値 [44] (〇).

良く一致する.

図 11 は、3.6 MeV/u Au²⁴⁺ + He 単電離の 3 重微分断面積の、散乱面への電子放出分布であ る [61]. 畳み込んだ有効微分断面積と実験値は 良く合っている. 実験値には $\theta_k = 0^\circ$ 付近に構 造が見られるが、その理由はまだわかっていない.

 $\sigma^{(3)}(q_{\perp}, k)$ は、 q_{\perp} が増加すると急激に減少 する.図 10、図 11 の $\sigma^{(3)}_{eff}(q_{\perp}, k)$ は q_{\perp} 近傍の 運動量移行の3 重微分断面積が混じるため、通 常の $\sigma^{(3)}(q_{\perp}, k)$ (図 10、図 11 図の黒実線)か ら大きく変化している.(23)式は標的ヘリウム原 子の熱運動による運動量分布で畳み込みをして いるが、入射イオンの運動量分布による畳み込み と解釈している人たちもいる[2,13,62,63].

6. おわりに

本稿では、比較的簡単な原子や分子のイオン 衝突による電離や電子捕獲過程の微分断面積に ついて、我々の最近の研究を紹介した.1 電子遷 移にも関わらず、実験データと理論値の一致は必 ずしも良くない.通常の散乱計算では一致が得ら れないが、入射体や標的の運動量分布について

図 11: 3.6 MeV/u Au²⁴⁺ 入射によるヘリウムの 電離 3 重微分断面積 ($\epsilon_k = 4 \text{ eV}$). CDW-EIS [60]: 畳み込みなし (黒実線), $\Delta p_{\perp} = 0.3$ で畳み込み (赤波線). 実験値 [61] (〇).

畳み込みを行うことにより、一致が改善される場合 もある.引き続き、実験データと理論計算の不一 致の解明に向けて、継続的な研究が必要だと思 われる.また、比較的簡単な原子や分子におい ても、1電子遷移や独立粒子モデルを超えた理論 の報告例は少ない.2電子捕獲や、電離+電子捕 獲、電離+励起などの多電子遷移について、理 論側の更なる進展が望まれる.

参考文献

- J. Ullrich et al., Rep. Prog. Phys. 66, 1463 (2003).
- [2] M. Schulz, 'Advances in Atomic, Molecular, and Optical Physics Vol. 66' (Elsevier, Amsterdam) 2017, p. 508.
- [3] D. S. F. Crothers and J. F. McCann, J. Phys. B 16, 3229 (1983).
- [4] L. Gulyás, P. D. Fainstein, and A. Salin, J. Phys. B 28, 245 (1995).
- [5] M. E. Galassi et al., Phys. Rev. A 66, 052705 (2002).
- [6] Y. D. Wang et al., Phys. Rev. A 40, 3673 (1989).

原子衝突学会誌しょうとつ 第18巻第5号 (2021)

- [7] S. E. Corchs, R. D. Rivarola, and J. H. McGuire, Phys. Rev. A 47, 3937 (1993).
- [8] A. Igarashi and L. Gulyás, J. Phys. B: At. Mol. Opt. Phys. 50, 035201 (2017).
- [9] H. D. Cohen and U. Fano, Phys. Rev. 150, 30 (1966).
- [10] M. F. Ciappina, O. A. Fojón and R. D. Rivarola, J. Phys. B: At. Mol. Opt. Phys. 47 042001 (2014).
- [11] M. R. Chowdhury et al., Phys. Rev. A 94, 052703 (2016).
- [12] M. Dhital et al., Phys. Rev. A 102, 032818 (2020).
- [13] M. Schulz et al., J. Phys. Conf. Ser. 1412, 062007 (2020).
- [14] A. Igarashi and L. Gulyás, J. Phys. B: At. Mol. Opt. Phys. 51, 035201 (2018).
- [15] H. R. J. Walters and C. T. Whelan, Phys. Rev. A 92, 062712 (2015).
- [16] A. C. Laforge et al., Phys. Rev. Lett. 103, 053201 (2009).
- [17] M. Schulz et al., Phys. Rev. A 81, 052705 (2010).
- [18] J. S. Alexander et al., Phys. Rev. A 78, 060701(R) (2008).
- [19] S. Sharma et al., Phys. Rev. A 89, 052703 (2014).
- [20] U. Chowdhury, M. Schulz, and D. H. Madison, Phys. Rev. A 83, 032712 (2011).
- [21] M. W. Gealy et al., Phys. Rev. A 51, 2247 (1995).
- [22] K. N. Egodapitiya et al., Phys. Rev. Lett. 106, 153202 (2011).
- [23] J. M. Feagin, L. Hargreaves, Phys. Rev. A 88, 032705 (2013).
- [24] L. Sarkadi, R. Barrachina, Phys. Rev. A 93, 032702 (2016).
- [25] E. H. Wichmann, Am. J. Phys. 33, 20 (1965).
- [26] J. R. Taylor, Scattering Theory: The Quantum Theory of Nonrelativistic Collisions (Wiley, New York, 1972).
- [27] D. V. Karlovets, G. L. Kotkin, and V. G. Serbo, Phys. Rev. A 92, 052703 (2015).

- [28] A. Hasan et al., J. Phys. B: At. Mol. Opt. Phys. 47, 215201 (2014).
- [29] N. V. Maydanyuk et al., Phys. Rev. Lett. 94, 243201 (2005).
- [30] M. Schulz et al., Phys. Rev. A 73, 062704 (2006).
- [31] T. P Arthanayaka et al., J. Phys. B: At. Mol. Opt. Phys. **49**, 13LT02 (2016).
- [32] A. K. Edwards et al., Phys. Rev. A **42**, 1367 (1990).
- [33] M. Takahashi et al., Phys. Rev. Lett. 94, 213202 (2005).
- [34] C. Dimopoulou et al., J. Phys. B: At. Mol. Opt. Phys. 38, 593 (2005).
- [35] D. Schmidt D et al., Phys. Rev. Lett. 101, 083201 (2008).
- [36] D. Misra et al., Phys. Rev. Lett. 102, 153201 (2009).
- [37] S. Bellm et al., Phys. Rev. Lett. 104, 023202 (2010).
- [38] A. J. Senftleben et al., J. Phys. B: At. Mol. Opt. Phys. 43, 081002 (2010).
- [39] X. Ren et al., Phys. Rev. Lett. 109, 123202 (2012).
- [40] B. R. Lamichhane et al., Phys. Rev. Lett. 119, 083402 (2017).
- [41] B. R. Lamichhane et al., Phys. Rev. A 96, 042708 (2017).
- [42] A. Igarashi, J. Phys. B: At. Mol. Opt. Phys. 53, 225205 (2020).
- [43] S. Sharma et al., Phys. Rev. A 86, 022706 (2012).
- [44] M. Schulz et al., Nature **422**, 48 (2003).
- [45] M. McGovern, Phys. Rev. A 81, 042704 (2010).
- [46] M. McGovern, C. T. Whelan, and H. R. J. Walters, Phys. Rev. A 82, 032702 (2010).
- [47] I. B. Abdurakhmanov et al., Phys. Rev. A 86, 034701 (2012).
- [48] R. E. Olson, J. Fiol, Phys. Rev. Lett. 95, 263203 (2005).
- [49] S. Otranto et al., J. Phys. B: At. Mol. Opt. Phys. 39, L175 (2006).
- [50] J. Fiol et al., J. Phys. B: At. Mol. Opt. Phys. 39,

L285 (2006).

- [51] J. Fiol et al., J. Phys.: Conf. Ser. 88, 012014 (2007).
- [52] M. Dürr et al., Phys. Rev. A 75, 062708 (2007).
- [53] M. Schulz et al., Phys. Rev. A 76, 032712 (2007).
- [54] F. Járai-Szabó and L. Nagy, J. Phys. B: At. Mol. Opt. Phys. 40, 4259 (2007).
- [55] F. Járai-Szabó and L. Nagy, Nucl. Instrum. Methods B 267, 292 (2009).
- [56] K. A. Kouzakov et al., Phys. Rev. A 87, 046702 (2013).
- [57] K. A. Kouzakov, Eur. Phys. J. D 71, 63 (2017).
- [58] H. Gassert et al., Phys. Rev. Lett. 116, 073201 (2016).
- [59] L. Gulyás, S. Egri, A. Igarashi, Phys. Rev. A 99, 032704 (2019).
- [60] A. Igarashi, L. Gulyás, J. Phys. B: At. Mol. Opt. Phys. 52, 245203 (2019).
- [61] D. Fischer, J. Phys. B: At. Mol. Opt. Phys. 36, 3555 (2003).
- [62] F. Navarrete et al., Nucl. Instrum. Meth. B **408**, 165 (2017).
- [63] F. Navarrete et al., Atoms 7, 31 (2019).

2021 年度 役員·委員会

会長

長嶋泰之 (東京理科大学)

幹事

星野正光	(上智大学)〔	副会長〕	中野祐司	(立教大学)
鳥居寛之	(東京大学)		石井邦和	(奈良女子大学)
永田祐吾	(東京理科大学	学)		

運営委員

石井邦和(奈良女子大学)	岡田邦宏	(上智大学)
小田切丈(上智大学)	北島昌史	(東京工業大学)
久間晋(理化学研究所)	酒井康弘	(東邦大学)
高峰愛子(理化学研究所)	土田秀次	(京都大学)
鳥居寛之(東京大学)	中野祐司	(立教大学)
永田祐吾 (東京理科大学)	中村信行	(電気通信大学)
樋山みやび(群馬大学)	星野正光	(上智大学)
山崎優一(東京工業大学)	渡部直樹	(北海道大学)

常置委員会

編集委員会	委員長:中野祐司	(立教大学)
行事委員会	委員長:石井邦和	(奈良女子大学)
広報渉外委員会	委員長:鳥居寛之	(東京大学)
顕彰委員会	委員長:星野正光	(上智大学)
庶務委員会	委員長:永田祐吾	(東京理科大学)

編集委員 石川顕一,岩山洋士,大橋隼人,岡田信二,椎名陽子, 土田秀次,冨田成夫,中野祐司,山崎優一

THE ATOMIC COLLISION SOCIETY OF JAPAN **原子衝突学会誌しょうとつ** 第18巻第5号(通巻102号) Journal of Atomic Collision Research ©原子衝突学会2021 <u>http://www.atomiccollision.jp/</u> 発行: 2021年9月15日 配信: 原子衝突学会事務局 <<u>acr-post@bunken.co.jp</u>>