原子衝突研究協会誌 2005年第2巻第2号

Journal of Atomic Collision Research

原子衝突研究協会 2005年3月15日 http://www.atomiccollision.jp/

目次

解説「共鳴散乱物理の基礎」(島村 勲)	6
第10回「化学反応の立体ダイナミクス」国際学会報告(笠井俊夫)	20
2004 年会員異動	22
「しょうとつ」原稿募集	22
今月のユーザー名とパスワード	22

原子衝突研究協会賛助会員

有限会社 オプティマ <u>http://www.optimacorp.co.jp/</u>

Optima Corp.

真空光学株式会社 <u>http://www.shinku-kogaku.co.jp/</u> 真空光学株式会社-Vacuum & Optical Instruments-

株式会社 タツオカ <u>http://homepage3.nifty.com/TATSUOKA/</u>

株式会社 東方書店 <u>http://www.toho-shoten.co.jp/</u>

株式会社 フジクラ <u>http://www.fujikura.co.jp/index_j.html</u>

一株式会社フジクラ 新しい時代へ 新しい技術へい

アイオーピー・パブリッシング・リミテッド <u>http://www.iop.org/</u>

解説「共鳴散乱物理の基礎」

独立行政法人 理化学研究所 島村 勲

Isao Shimamura, The Institute of Physical and Chemical Research (RIKEN), Wako, Saitama 351-0198, Japan. shimamur@rarfaxp.riken.jp

平成17年3月7日原稿受付

概要

原子分子過程の中間状態として"共鳴状態"が形成され,それが有限寿命でいろい ろなチャネルへ崩壊し,その過程の結果に 顕著な影響を与えるという"共鳴過程"の 基礎理論とその物理的意味を解説する.基 本的なことはポテンシャル散乱理論で説明

I. 共鳴過程とは

波長をスキャンしながらシンクロトロン 放射光を原子に吸収させ, 電離させてみよ う. 連続吸収スペクトルにあちこちピーク やディップ、複雑な非対称構造などが混じ ることがよくある(Heの例[1]を図1に示す). これは原子内の2電子が同時励起した2電 子励起状態(two-electron excited state), ある いは2 重励起状態(doubly excited state)へ原 子が遷移したために起こる現象である. イ オン化エネルギーより高い励起状態なので これは本当の束縛状態ではなく、まもなく 波動関数にイオン化状態が混ざり自動電離 (autoionize), つまり自然に電離する. 光吸 収後、直ちに放出された電子の波と、自動 電離で時間が遅れて出てきた電子の波の間 に干渉が起こり,吸収スペクトルに複雑な 構造ができるのである.構造のエネルギー 幅Γは2重励起状態のエネルギーの不確か さ(測定精度の限界)を表し、自動電離するま

できるのでそれに多くの紙面を費やし,実際の原子分子過程で異なる点には簡単に触れるに止める.共鳴状態と似ていて間違えやすい"virtual states"についても解説する. 式を追うには大学初年度程度の数学の知識で十分と思う.

での寿命τとは

$$\tau \Gamma = \hbar \tag{1}$$

という不確定性関係にある.いずれ自動電 離するこの離散状態まがいの状態,即ち自 動電離状態(autoionizing state)は共鳴状態の 一種で, Γを共鳴幅という.自動電離状態 を中間状態とする光電離は共鳴過程の一種 である.

低エネルギー電子ビームを原子に衝突さ せ、散乱断面積を電子エネルギーEの関数 として測ってみよう.この断面積 $\sigma(E)$ にも、 ピークやディップ、あるいは非対称構造が 見られることがよくある.入射電子が原子 内電子を一つ励起し、そのために自分はエ ネルギーを失って原子内の励起軌道に捕ま ってしまえば、2 重励起状態が一時的負イ オン(temporary negative ion)として形成され る.これも束縛状態まがいの自動電子脱離 状態(autodetaching state)で、その寿命 τ が尽

図 1. He の光電離スペクトルに見られる共鳴構造 [1]. N, n は励起 2 電子の主量子数. 各 N につき n=N,N+1,…という系列があるが, N=5と6の 系列,6と7の系列の間に重なりがある.

きてしまえば電子を1個放出する.この放 出電子はあたかもふつうの散乱電子のよう に観測される.短時間で直接散乱された電 子の波と、負イオン状態を一時経由してき た電子の波とが干渉し、 $\sigma(E)$ に構造を作る のである.この構造の幅 Γ (共鳴幅)と寿命 τ の間にも不確定性関係(1)が成り立つ.自動 電子脱離状態も共鳴状態の一種で、それを 経由する散乱は共鳴散乱の一種である.

このように、原子分子分野に限らずいろいろな素過程の中間状態として、本当の束縛状態ではないがそれによく似た、ただし有限寿命で崩壊する状態(decaying state)がしばしば作られる.これを準束縛状態(quasi-bound state),または共鳴状態(resonance state),それを経由する過程を共

図 2. ポテンシャル障壁の内側に作られる共鳴準位 (エネルギー位置 E_r を水平実線・点線で示す)とそ の束縛状態まがいの波動関数がトンネル効果で外 に漏れる様子(破線),及び位相のずれ $\delta(E)$ が準位 付近で急激に π ラジアン増加する様子(90° 倒して みるとエネルギーE の関数としての $\delta(E)$ がわか る).

鳴過程(resonance process)と呼ぶ. それが散 乱過程ならば**共鳴散乱**(resonance scattering) である.

さきの電子散乱のように、2 体衝突で内 部状態を励起したために相対運動エネルギ ーが不足し、2 体の複合状態(compound state) である**衝突複合体**(collision complex)が一時 できるとき、その定式化を行った理論家の 名前から、Feshbach 共鳴と呼ぶ[2]. この場 合、内部状態が励起されたチャネルは衝突 の最終段階までもたない、いわゆる閉じた チャネルなので、この共鳴を閉チャネル共 鳴(closed-channel resonance)ともいう(付録 A 参照).

電子励起に限らず,例えば分子の振動励 起などによる Feshbach 共鳴も考えられるし, Bose-Einstein 凝縮に関連して最近話題の共 鳴は,超微細構造の励起に伴う Feshbach 共 鳴である.光吸収でできた図1の2重励起 状態は電子・イオン衝突でも作ることがで き,これも Feshbach 共鳴の例であり,内殻 励起状態(inner-shell excited state),内殻電離 状態(inner-shell ionized state),核反応での複 合核(compound nucleus)などの例もある.

一方,2体間の相互作用ポテンシャル V(r)に強い引力型の短距離相互作用とその 外側にポテンシャル障壁がある場合,障壁 の内側のr領域,つまり2体間距離が小さ い領域に系が長時間閉じこめられて2体複 合状態ができることもある(図2:第III.A 節で再び説明する).衝突2体間ポテンシャ ルの形が原因のこの共鳴を原子物理では**形** 状共鳴(shape resonance),核物理ではポテン シャル共鳴(potential resonance)と呼ぶ.

電子・分子衝突では, 分子の場に電子が 捕まってできる形状共鳴が頻繁に見られる. 分子負イオンが保たれる長時間の間に電子 運動と分子の振動運動が強く結合(couple) し、前者から後者に十分なエネルギーが伝 えられると振動励起断面積が大きくなる. 共鳴が起こらない短時間衝突では,非常に 軽い電子が重い原子核に体当たりして動か すことは難しく,振動励起は非常に起こり にくい. 図3にH2の振動準位vの励起断面 積を示す[3]. 電子と核の運動の複雑な絡み 合いで,1 つの形状共鳴が数個の不等間隔 ピークに分離している例がv = 4, 5, 6への 励起で見られる. 共鳴状態負イオンの振動 準位に従って等間隔に分離する場合もある が,図3,v=4,5,6の例では負イオンが振 動準位を形成する前に壊れてしまうので, 分離の原因はもっとややこしい.

形状共鳴の本質は単一チャネル機構で, ポテンシャル障壁を突き抜けて外へ波が出 ていくトンネル効果の効率で寿命 τ が決ま る. Feshbach 共鳴は内部状態励起が関わる ため,多チャネル(2 チャネル以上)機構に依 っており,内部運動自由度と相対運動との 結合の強さで寿命が決まる.例えば,2 重

図 3. 電子衝撃による H₂ 分子の振動励起 (v=0→v≥1)断面積に見られる形状共鳴[3].

励起状態では励起 2 電子間の相互作用,つ まり電子相関によってその一方に十分なエ ネルギーが偏る効率でτが決まるのである.

実は多チャネル問題を形式的に単一チャ ネルのポテンシャル散乱問題に還元するこ ともできるが[2],このときのポテンシャル V_{opt} [光学ポテンシャル(optical potential)とい う]は衝突エネルギーEの関数になり、この 理論形式では Feshbach 共鳴は非常に狭い E の範囲内で急激に $V_{opt}(r;E)$ が変動するため に起こるのである.つまり、多チャネル問 題を形式的に単一チャネル問題に還元して Feshbach 共鳴を眺めても、形状共鳴の機構 とは全く違う.この定式化は本稿のレベル よりかなり高いので、概略を付録 A で解説 するに止める.

なお, 散乱断面積にピークが現れても, これを短絡的に共鳴と解釈するのでは物理 学とは言えない. 共鳴でなくても, エネル ギーとともに断面積が始めは増え, いずれ 減少に転じ,幅広いピークに見える, とい う例は多い. モデル計算で形状共鳴として それが再現できてしまう可能性もあり,注 意を要する.幅の狭いピークでも,例えば 後に述べるような,弱い束縛状態やいわゆ る virtual state によるものもある. これらは 共鳴散乱と明確に区別しなければならない. 共鳴の断定には,実は綿密な解析が必要な のである.

共鳴と確認され, エネルギー分解能が高 い測定をしても,みかけの幅を共鳴幅 Γ と 解釈して ħ/τ に等しいと思うと誤ることも ある. 例えば, ある衝突エネルギーEr での 電子・分子衝突で分子が電子を一時捕え, 時間 τ 後に再放出して共鳴散乱が起こると する. その共鳴幅は $\Gamma = \hbar/\tau$ を満たす. 分子 の振動運動の速さに比べ衝突時間が十分短 かければ、各衝突は原子核が殆ど止まって いる間に終わる.しかし、どの位置に止ま っているかで電子・分子相互作用は変わる から、共鳴エネルギー E_r も共鳴幅 Γ も核の 位置によって違い、それを振動運動範囲で 平均した、Γよりはるかに幅の広い構造が 観測されるのである.図3のv=1,2への励 起はその例である.

本稿は入門編を意図しており,あまり特 殊な場合は扱わない.また,近年標準的な 言葉遣いに基づくので,歴史的な教科書, 古い文献とは用語が違うこともある.実際, 共鳴とか virtual state という言葉はいろいろ な意味で使われており,付録 B で整理を試 みる.

II. ポテンシャル場による散乱

電子・原子弾性散乱等を頭に置き,中心 カポテンシャル場V(r)による質量mの粒子 の散乱を論じよう[4-7].入射粒子が一時に せよ,場に捕えられる共鳴散乱が起こるに は,その速度は遅い必要がある.このよう な低エネルギー散乱には,入射粒子ビーム を角運動量成分毎に別々に扱う,いわゆる 部分波分解が適している.中心力場なので 粒子は動径 r 方向の力しか受けず,角運動 量1は保存されるから,終始一定の1をもつ 運動の動径ハミルトニアン H_r による Schrödinger 方程式

$$0 = -\frac{2m}{\hbar^2} [H_r - E] \psi_l(r;k) = \left[\frac{d^2}{dr^2} - \frac{2mV}{\hbar^2} - \frac{l(l+1)}{r^2} + k^2 \right] \psi_l(r;k)$$
(2)

を境界条件 $\psi_l(r=0;k)=0$ で解くことになる.ここで粒子の運動エネルギーEと波数 k (運動量 $\hbar k$)の関係 $E = (\hbar k)^2/2m$ を使った.

各ビーム成分(部分波)の散乱断面積 $\sigma_l(E)$ をすべて足し合わせれば、全断面積

$$\sigma(E) = \sum_{l=0}^{\infty} \sigma_l(E)$$
 (3)

が求まるが、低エネルギー散乱では l が増 えると急激に遠方通過運動になって殆ど散 乱は起こらず、 $l=0(s \ w)$ だけで済むか、 $l=1(p \ w)$ か $l=2(d \ w)$ くらいまでで十分な ことが多い.そこでまず s 波散乱だけ考え よう.

ポテンシャルがなければl=0のとき(2) には独立解 sin kr, cos kr があるが, sin kr だ けが境界条件を満たす. $V(r) \neq 0$ なら粒子は 散乱を受け, $\psi_0(r;k)$ は変形するが,大きな r では(これを $r \rightarrow \infty$ と書き,そのときの関 数形を漸近形と呼ぶ) V(r)=0なので, $\psi_0(r;k)$ の漸近形は必ずさきの独立解の線 形結合 $C_1 \sin kr + C_2 \cos kr$ で表せる(係数 C_1 , C_2 は kの関数である). この形は位相をずら せば(ずらす量 δ_0 は C_1 , C_2 で決まる)1 つの 正弦関数で次のように書ける:

$$\psi_0(r;k) \xrightarrow{r \to \infty} C' \sin\{kr + \delta_0(k)\}$$

= $C'' \Big[e^{-i(kr + \delta_0)} - e^{+i(kr + \delta_0)} \Big]$ (4)
= $C''' \Big[e^{-ikr} - S_0(k) e^{+ikr} \Big].$

V(r)の漸近形がクーロンポテンシャルだと $\psi_0(r;k)$ はこうは書けないので、V(r)は短距 離型と仮定しておく.(4)のC', C'', C'''は むろんrに依らない係数, また $S_0(k)$ は

$$S_0(k) = \exp(2i\delta_0) \tag{5}$$

のことで、S 行列(S matrix)または散乱行列 (scattering matrix)という(いまはV(r)による 特定の部分波散乱なので1×1行列で、単な る数である).単位内向き波 e^{-ikr} が入るとき、 場で散乱されて大きなrへ出ていく外向き 波 e^{+ikr} の複素振幅を、 $-S_0(k)$ は表す.V(r)と Eが実数である限り、位相のずれ $\delta_0(k)$ は 実数で、 $|S_0(k)|=1$ である.これはフラック ス保存則をも意味することが示せる.V(r)か Eが複素数という"変な場合"には $\delta_0(k)$ が複素数になり、 $|S_0(k)|\neq1$ となる.共鳴散 乱ではこの"変な場合"が意味を持つ(第 IV 節).

l>0のときは(2)に遠心力ポテンシャル が含まれ、これによる位相のずれ $-l\pi/2$ ラ ジアン(以下、角度はラジアン単位で表す) と、V(r)による"散乱の"位相のずれ δ_l の 両方を、波動関数 $\psi_l(r;k)$ の漸近形は含む.

 $\delta_l(k)$,または(5)に準じ $S_0 = \exp(2i\delta_l)$ と定義したS行列で部分波lの散乱断面積は

$$\sigma_{l}(E) = (2l+1)\frac{4\pi}{k^{2}}\sin^{2}\delta_{l}(k)$$

$$= (2l+1)\frac{\pi}{k^{2}}|1-S_{l}(k)|^{2}$$
(6)

と書けることが簡単に導ける[4-7]. ポテン シャルがなければ波は散乱されず,位相の ずれ δ_l は0で,断面積(6)も0になる. V(r)による散乱が強まり, δ_l が $\pi/2$ まで増える とともに断面積も増えるが,それより強く 波が散乱されて δ_l が $\pi/2$ を越えると,断面 積 σ_l がかえって減る,という奇妙な現象が (6)には見られる.これは量子論効果で,断 面積 $\sigma(E)$ に対称,非対称な様々な構造が見 られると第 I 節で述べた共鳴構造は,まさ にこの効果が引き起こしているのである (第 III 節).

ついでながら、あるEで $\delta_0(E)$ が π の整数 倍をよぎると、主要成分のはずのs波断面 積が 0 になり,全断面積に顕著な極小が見 られる. これを Ramsauer (または Ramsauer-Townsend)効果といい,低エネル ギー電子散乱でいくつもの例が知られてい る[8]

III. 共鳴散乱:時間遅れと断面積の形A: 定性的説明

さて,第 I 節で述べたように,共鳴状態 は有限寿命 τ で崩壊する束縛状態まがいの 状態で,共鳴散乱でも中間状態として一時 作られる.いまの問題では,入射粒子がV(r)の場の中に捕まり,そこに時間 τ の間滞在 した後に再び離れていき,単なる自由運動 に比べ時間が遅れる.この重要な時間遅れ (time delay)の概念を調べるには時間依存 (time-dependent)Schrödinger 方程式

 $i\hbar\partial \Psi_l(r,t)/\partial t = H_r \Psi_l(r,t)$ (7) が必須で, 時間非依存(time-independent) Schrödinger 方程式(2)では共鳴散乱は表せな い,と思われるかも知れない.しかしV(r)が 時間非依存ならば,波動関数

 $\Psi_{l}(r,t) = \psi_{l}(r;k) \exp(-iEt/\hbar)$ (8)
は(7)を満たす[(7)の左辺は $E\Psi_{l}(r,t)$ となり,
(2)によりこれは(7)の右辺に等しい]. つまり,
(2)と(7)は等価で,時間に依らない(2)の解 $\psi_{l}(r;k)$ がわかれば時間情報は引き出せる
はずである.実際,付録 C に示すように,
散乱による時間遅れ Δt は

$$\Delta t = 2\hbar \frac{d\delta_l}{dE} = -i\hbar \frac{dS_l}{dE} S_l^* \tag{9}$$

と,時間非依存ψ_l(r;k)の漸近形に含まれる 量だけで表せる[5,9].

ところで,図2のようにV(r)(*l*>0ならこ れに遠心力ポテンシャルを加えたもの)の 強い引力部の外側にポテンシャル障壁があ れば,仮りに障壁をその高さのまま無限遠 にまで引き延ばせば正エネルギーの束縛状

図 4. 位相のずれ $\delta(E)$ と部分波断面積の主要部 sin² $\delta(E)$ の関係. 共鳴による $\delta(E)$ の π ラジアンの 増加がバックグラウンド位相 δ_b により異なる効果 を示す説明(本文参照).

態 $\varphi(r)$ ができる可能性がある.実際の障壁 ではトンネル効果で外へ抜ける波が、小さ な振幅ながら $r \rightarrow \infty$ まで無限に振動し、 $\varphi(r)$ は本当の束縛状態ではなくなる.しか しV(r)の引力部辺りでは $\varphi(r)$ の振幅が遠 方の振幅よりはるかに大きく、束縛状態ま がいの様子を示す.振幅が大きいというこ とは、時間依存の描像で言えば、その辺り での滞在時間が長いことを意味し、これは まさに共鳴状態を表している.その寿命が 長ければ長いほど、漸近的な振幅に対して 引力部での振幅が大きい.

本当の束縛状態では、基底状態から1つ ずつ準位が上がる度に波動関数の節(node) が1つずつ増える.同様なことが、束縛状 態まがいの $\varphi(r)$ にも起こる.即ち、 $\varphi(r)$ の 準位 E_r より少し低いエネルギーの連続状態 波動関数に比べ、 E_r より少し高いエネルギ ーの波動関数は節が1つ多い.無限に振動 する波動関数だから節は無限個あるが、節 1 つの増加は π だけの位相の増加に相当す る.即ち $E \simeq E_r$ の前後で急激に位相のずれ $\delta(E)$ が π ほど増加するのである(以下、自明 な添え字1は省略する).この急激な増加分 を $\delta_r(E)$ と書けば, Eには強く依らないバッ クグラウンドの位相のずれ δ_b の上にそれが 乗った

 $\delta(E) = \delta_b + \delta_r(E)$ (10) という形に $\delta(E)$ を表せるであろう.

 $E \approx E_r$ 付近で急激に 0 から π まで増える $\delta_r(E)$ の傾き $d\delta_r/dE$ は非常に大きく,時間 遅れ(9)が大きくなるので, δ_r が共鳴散乱を 表すことがわかる.一方, δ_b は傾きが非常 に小さく,時間遅れの殆ど無い直接散乱成 分を表すだけで,一見,重要でないように 見える.しかし実はこの直接散乱と共鳴散 乱が量子論的に干渉し合って断面積 $\sigma(E)$ の形を複雑に変えるので, δ_b は非常に重要 である.

そこで部分波断面積(6)で E 依存性の弱い 因子 $(2l+1)4\pi/k^2$ を除いた主要部分 sin² δ が δ の変化とともにどう変わるか, δ_b が 4 通りの定数の場合につき, 図 4 を参考にし て見てみる(後に説明する図5 も参照された い).

i) $\delta_b = 0$ なら $\delta(E)$ は 0 から $\pi/4$, $\pi/2$, $3\pi/4$ を経由して π まで増え, このとき $\sin^2 \delta$ は 0 から 0.5, 1 と増えた後に再び 0.5, 0 と減り, 中央が最大のピークを示す.

ii) $\delta_b = \pi/2$ なら $\delta(E)$ は $\pi/2$ から $3\pi/2$ まで増え、sin² δ は1から0.5、0と減少後に0.5、1と増え、中央が最小のディップを示す.

iii) $\delta_b = \pi/4 \text{ cb} \delta(E) \text{ lt} \pi/4, \pi/2,$ $3\pi/4, \pi, 5\pi/4 \text{ b} / 4 \text{ c} / 4, \pi/2,$ $1 \wedge \# m$ 後 0.5, 0 と減り, その後また 0.5 まで増え, 左にピーク, 右にディップの非 対称形を取る.

iv) $\delta_b = -\pi/4 \text{ cb} \delta(E) \text{ ld} - \pi/4, 0, \pi/4, \pi/2, 3\pi/4 と増え, sin² \delta td 0.5 から 0 まで減少後 0.5, 1 と増え, 再び 0.5 まで減る, 左にディップ,右にピークの非対称形を取$

表 I. バックグラウンドの位相のずれ δ_b (単位 °)と 形状パラメータ q の関係. 周期 180°で繰り返す. ($0 \pm$ はわずかに正か負, 180-は 180°のわずかに 下)

$\delta_{\scriptscriptstyle b}$	-45	-30	0-	0+	30	45
q	1.0	1.73	$+\infty$	$-\infty$	-1.73	-1.0
$\delta_{\scriptscriptstyle b}$	60	90	120	135	150	180-
q	-0.58	0.0	0.58	1.0	1.73	$+\infty$

る.

どの場合も E とともに $\delta(E)$ が増え,散乱 は強まるばかりだが,第 II 節で述べた量子 効果で断面積は増えることも減ることもあ る. δ_r との位相関係による干渉効果が δ_b の 値により大きく違い,断面積の形が変わる から, δ_b を形状パラメータと呼んでもよい が,通常

$$q = -\cot \delta_b \tag{11}$$

を形状パラメータ(shape parameter)と呼んで いる[10].

表 I にこの関係を数値で示す.先の考察 から,q < 0なら左にピークで右にディップ, q > 0ならその逆とわかる.

B: Breit-Wigner 公式と Fano 公式

第 III. A 節では定性的な話をしてきたが, $\delta(E) や \sigma(E)$, (Δt)(E)の解析形がわかれば, さらに共鳴散乱の物理的理解が深まる.第 IV 節に示すように,実は解析形の導出は簡 単で,2つのパラメータ Γ , E_r を使い

$$\varepsilon = \frac{E - E_r}{\Gamma/2} = -\cot \delta_r(E)$$
(12)

と表せる.最初の等式は"この式で ε を定 義する"という意味で、 ε は共鳴位置 E_r か らのエネルギーEのずれを幅 Γ の半分で規 格化したものである.区間 $-1 \le \varepsilon \le 1$ は E_r を中心とする幅 Γ のエネルギー区間である.

(12)は位相のずれに関する Breit-Wignerの1準位公式と言われる. "1準位"は,2

図 5. (a) 共鳴による位相のずれ $\delta(E)$ の π ラジア ンの増加を、4 通りのバックグラウンド位相 δ_b に つき示す.右側の $\sin^2 \delta(E)$ の値を追うことにより、 部分波断面積の主要部のエネルギー依存性(図 6 に 示す)が得られる. ε は本文(12)で定義. (b) $\delta(E)$ の共鳴部による時間遅れ Δt (寿命 τ を単位とす る).

つ以上の共鳴構造がその幅の範囲内に重な り合わない単純なケース,という意味で, もしも重なり合うと複雑な様相を呈する. 実は図1の最も光子エネルギーが高い部分 にはそのような**重なり共鳴**(overlapping resonances)が含まれている.

(12)を変形すれば

$$\delta_r = -\cot^{-1}\varepsilon = -\cot^{-1}\frac{E - E_r}{\Gamma/2}$$
(13)

となり、 ε が負の大きな値から正の大きな 値まで、つまりEが E_r よりも十分小さな値 から十分大きな値まで増える間に、確かに $\delta_r(E)$ はほぼ0からほぼ π まで増える. δ_r は Γ 、 E_r が何であっても ε だけで表せるから、 急激な π 近くの増加が起こるエネルギー区 間の幅は Γ で決まる.4 通りの定数 δ_b につ き、 δ が ε とともに増える様子を図5 に示 す.右側の目盛が $\sin^2\delta$ を表すので、各曲線 に従ってこの目盛りを追えば、先に述べた $\sin^2\delta$ の振る舞いがこの図を使って具体化 でき、後に説明する断面積の形、つまり図 6 ができ上がる.

微分公式 d(cot⁻¹x)/dx = -(1+x²)⁻¹を使うと,時間遅れ(9)は

$$\Delta t = \frac{4(\hbar/\Gamma)}{1+\varepsilon^2} + 2\hbar \frac{d\delta_b}{dE}$$

$$= \frac{\hbar\Gamma}{(E-E_r)^2 + (\Gamma/2)^2} + 2\hbar \frac{d\delta_b}{dE}$$
(14)

となり,第1項が共鳴散乱波の Lorentz 型時 間遅れ,第2項は直接散乱の時間遅れで一 般に小さい. δ_b が定数の場合の,即ち共鳴 部分だけの Δt を図5に含める. (14)に現れ る \hbar/Γ は不確定性原理(1)から共鳴状態の 寿命 τ とわかる. $\varepsilon = \pm 1$,即ち $E = E_r \pm \Gamma/2$ で Δt は最大値 4τ の半分になるから, Γ は半 値幅(FWHM)である. ピーク高(最大時間遅 れ)が半値幅だけで決まることは不確定性 原理から物理的に妥当である.

部分波断面積 $\sigma_l(E)$ は簡単に計算でき,

図 6. (a) 共鳴断面積の主要部 $(\varepsilon + q)^2 / [(1+q^2)]$ $(1+\varepsilon^2)]$ のエネルギー依存性. ε は本文(12)で定義. 断面積は形状パラメータ $q = -\cot \delta_b$ により異なる 形を示す. ()内の角度は δ_b を表す. (b) $(\varepsilon + q)^2 / (1 + \varepsilon^2)$ の部分だけを示した Fano 図[10].

$$[4\pi(2l+1)]^{-1}\sigma_{l}(E)$$

$$=k^{-2}\sin^{2}\delta_{l}(E)$$

$$=k^{-2}\sin^{2}(\delta_{b}+\delta_{r})$$

$$=\frac{k^{-2}(\sin\delta_{b}\cos\delta_{r}+\cos\delta_{b}\sin\delta_{r})^{2}}{(\sin^{2}\delta_{b}+\cos^{2}\delta_{b})(\sin^{2}\delta_{r}+\cos^{2}\delta_{r})}$$

$$=\frac{(\cot\delta_{r}+\cot\delta_{b})^{2}}{k^{2}(1+\cot^{2}\delta_{b})(1+\cot^{2}\delta_{r})}$$

$$=\frac{(\varepsilon+q)^{2}}{k^{2}(1+q^{2})(1+\varepsilon^{2})}$$
(15)

$$=\frac{(1+\varepsilon/q)^2}{k^2(1+q^{-2})(1+\varepsilon^2)}$$
(16)

と、**Fano 公式**(Fano profile)[10]の形を取る. これをいくつかの定数の q について、図 6a に図示する.(15)と(16)は同等だが、|q|が大 きいとき、つまり対称ピークに近いときに は(16)の方が便利で、とくに $|q| = \infty (\delta_b = 0)$ のときは、エネルギー依存性の弱い因子 k^{-2} を除き完全な Lorentz 型になる.

共鳴エネルギーとか共鳴位置とふつう呼 ばれる値 E_r , つまり共鳴の中央値は, δ_r に よる時間遅れ Δt が最大になるエネルギー だが, これと断面積の極大点とは一般にず れていることが図 5, 6 からわかる. なお, E_r から十分離れたエネルギーでのバックグ ラウンド断面積は, (15)で $\epsilon \rightarrow \infty$ として

$$\sigma_{l,b} = [4\pi (2l+1)/k^2](1+q^2)^{-1}$$
(17)

となることがわかる.

共鳴散乱断面積の形を論ずるとき、ふつ うは因子 k^{-2} は重要でなく、省いて考える. しかし、ごく低エネルギーでは、 k^{-2} が断面 積の形を大きく変えるので注意を要する.

Fano 論文[10]の図(図 6b に転載)は頻繁に コピーされているが,それには(15)の因子 $(1+q^2)^{-1}$ を含めていない.それは,断面積 の $\sigma_{l,b}$ に対する比を示しているからである. しかし,それでは q が大きいと見かけのピ ーク値が非常に大きくなるし,対称ピーク は $|q| = \infty$ だから図に収まらない.フラック ス保存則により, $\sigma_l(E)$ には q の如何に依ら ない(sin² $\delta_l = 1$ のとき実現される)最大値が あることを,Fano 図は忘れさせる.Fano は 光電離断面積を頭に置いた扱いをしており, 非共鳴の場合との比を示したのは理解でき る.しかし,別のチャネル(上の議論では他 の部分波断面積)があれば現実のバックグ ラウンドは値が変わってくるのだから,や はりこの比はあまり好ましくないと思う.

 $\delta(E)$ が $\pi/2$ の奇数倍,即ち部分波断面積 を極大にする値を正の傾きでよぎるのを "共鳴"と定義する文献もある. Schiff の量 子力学の教科書[7]もその例である.式(12), (15)の意味での共鳴散乱が起こるエネルギ ー範囲内で $\delta(E)$ は急激に π ほど立ち上が るのだから、その途中でπ/2の奇数倍を当 然よぎるだろう.しかしその E と,時間遅 れを最大にする $E(=E_{r})$ とはずれるし, $\delta(E)$ の急激な増加とは無関係に, $\pi/2$ の奇 数倍ほどの位相にたまたまなっただけとい うときまでも"共鳴"と呼ぶのは、物理的 な意味に乏しいと思う.実際,原子物理分 野では近年この定義を見かけない.なお, $\delta(E)$ が負の傾きで $\pi/2$ の奇数倍をよぎる とき, 反共鳴(anti-resonance)と言うが, 原子 物理で反共鳴が断面積に強い影響を与える 具体例を,私は知らない.

予め物理的考察か計算に基づいて決めた 束縛状態型波動関数 φ を使い、これと単純 な連続状態波動関数 $\phi(E')$ とを重ね合わせ て

 $\psi(E) = a(E)\varphi + \int c(E';E)\phi(E')dE' \qquad (18)$

との形に波動関数を表すことにより,(15) を導くこともできる[10]. φ はハミルトニア ンの正しい固有状態ではなく,連続状態 $\phi(E')$ が自動的に混ざって固有状態になろ うとするため,粒子は最終的には $r \rightarrow \infty$ に 出て行く.共鳴の中央値 $E, は \varphi$ のエネルギ 一期待値からわずかにずれる. $\phi(E')$ が混ざ ると寿命が有限になり,エネルギーに幅が できるとともに,ずれ(energy shift, resonance shift)も生じるのである.

ここまで散乱断面積を論じてきたが,光 電離断面積 σ_{ph} は,始状態(束縛状態) ψ_i と終 状態(連続状態) ψ_f の間に双極子演算子

図 7. 複素 *k* 平面上での *S* 行列の極. 第 IV 節(A) 束縛状態, (B)virtual state, (C)共鳴状態, 及び(D)の 場合を区別して示す.

$$\sum_{j} \mathbf{r}_{j} \, \epsilon 挟んだ積分の 2 乗に比例する:$$
$$\sigma_{\rm ph} \propto \left| \left\langle \psi_{f} \left| \sum_{j} \mathbf{r}_{j} \left| \psi_{i} \right\rangle \right|^{2}.$$
(19)

ここで \mathbf{r}_{j} (j = 1,2,…) は電子座標である.ま た ψ_{f} は散乱波動関数の漸近境界条件(入射 平面波+外向き散乱波)とは少し違い,平面 波+内向き散乱波という漸近形をもつ.

共鳴が起こると波動関数の漸近的振幅に 比べ,小さなrの領域(内部領域と呼ぼう) で振幅が大きくなることを,この節の第2 パラグラフで述べた.これは(18)のa(E)が 共鳴エネルギー辺りではc(E';E)より大き くなることを意味する.このとき ψ_f は,内 部領域に閉じこもる ψ_i との間に大きな重 なり積分をもち,(19)の σ_{ph} も急増する.た だし,(19)の積分 $\langle \cdots \rangle$ には(18)の2成分から 寄与があり,その間の干渉効果で共鳴構造 ができる事情は,共鳴散乱の場合と似てい る.

IV. 実数波数と複素波数

ここで第 II 節で触れた"変な場合", 即ち エネルギーE や波数 k が複素数の場合を考 えよう. むろん我々の目的は, 衝突エネル ギーが現実の観測量である条件,即ち正の 実数エネルギーでの散乱現象を調べること にある.このとき当然,|S(k)|=1であるが, k が実数でなければ|S(k)|は何でもよかろ う.もしも複素 k 平面で実軸の近くにS(k)を発散させる k, つまり S 行列の極(pole)が あれば,その特異性の影響が尾を引いて, 近くの実数波数でのS(k)に大きく効くかも 知れない.非現実的,非物理的な複素 k 平 面を考える目的はそこにある.以下,式を 煩雑にせぬよう再びs波を扱うが,添え字 0 は省略する.

S(*k*) が発散すれば(4)の最後の辺で*e*^{+ikr}の係数は*e*^{-ikr}の係数より非常に大きいから

 $\psi(r;k) \xrightarrow{r \to \infty} C \exp(+ikr)$ (20)

としてよい.時間依存 Schrödinger 方程式の 解(8)の漸近形は次のように書ける:

 $\Psi(r,t) \xrightarrow{r \to \infty} C \exp(+ikr) \exp(-iEt/\hbar) (21)$

S行列の極を4種類に分類しよう(図7). (A) $k = ik_2 (k_2 > 0)$ の場合

$$E = -(k_2\hbar)^2 / 2m < 0,$$

$$\psi(r;k) \xrightarrow{r \to \infty} C \exp(-k_2r), \qquad (22)$$

$$|\Psi(r,t)|^2 \xrightarrow{r \to \infty} |C|^2 \exp(-2k_2r).$$

これは指数関数的に減衰する漸近形をもつ 負エネルギーの**束縛状態**(bound state)で、漸 近的な存在確率| $\Psi(r,t)$ ²は時間に依らない. (B) k = -ik, (k, > 0)の場合

$$E = -(k_2\hbar)^2 / 2m < 0,$$

$$\psi(r;k) \xrightarrow{r \to \infty} C \exp(+k_2r), \qquad (23)$$

$$|\Psi(r,t)|^2 \xrightarrow{r \to \infty} |C|^2 \exp(+2k_2r).$$

これを virtual state, または virtual level[11] と呼ぶ.指数関数的に増大する漸近形をも ち,物理的に妥当な境界条件を満たさない. 漸近的存在確率は時間に依らない.エネル ギーは束縛状態と同じく,負の実数である. Virtual state が正エネルギーをもつと勘違い している論文も時折見かける.

(C)
$$k = k_1 - ik_2 \ (k_1 > k_2 > 0)$$
 ⑦場合
 $E = (k_1^2 - k_2^2)\hbar^2 / 2m - ik_1k_2\hbar^2 / m,$
 $\psi(r;k) \xrightarrow{r \to \infty} C \exp(+ik_1r) \exp(+k_2r),$
 $|\Psi(r,t)|^2 \xrightarrow{r \to \infty} |C|^2 \exp(+2k_2r) \exp(-\Gamma t / \hbar).$

(24)

このエネルギーを
$$E = E_r - i\Gamma/2$$
 (25)

と書くと, k_1 , k_2 の条件から E_r も Γ も正で, 実はいままで議論してきた E_r , Γ と同じ意味をもつことが,以下のようにしてわかる.

(25)は $\varepsilon = -i \, \varepsilon$ 意味するから、S がそこで 発散し、かつ実際の散乱現象が起こる実数 の k、つまり実数 ε では|S(E)|=1との条件 を満たすには、適当な実数位相 δ_b を含む形

$$S(E) = \left[\frac{\varepsilon - i}{\varepsilon + i}\right] \exp(2i\delta_b)$$
(26)

を取らねばならない. (26)は極の近傍でだけ 成り立つ近似式なので,例えば後に説明す る関係式(28)などは満たさない.ここで

 $\varepsilon - i = \alpha e^{i\theta} = \alpha \cos \theta + i\alpha \sin \theta$ と置くと $\varepsilon = -\cot \theta$ である.一方, (26)の大 括弧の中は $(\alpha e^{i\theta})/(\alpha e^{-i\theta}) = e^{2i\theta}$ だから,

 $S = \exp(2i\delta) = \exp(2i\theta)\exp(2i\delta_b)$ となる.ゆえに π の整数倍の不定性を除き,

 $\delta - \delta_b = \theta = -\cot^{-1}\varepsilon$

と書ける. θ は(10)の δ_r と同じ意味をもつ から, Breit-Wigner 公式(13)が証明された.

この極を**共鳴極**(resonance pole)と呼び,こ の複素エネルギー状態をよく"**共鳴状態**" と呼ぶが,これは前節までの実数エネルギ ーの共鳴状態とは別の定義で,現実の物理 状態を表す波動関数ではない.実際, $r \rightarrow \infty$ で指数関数的に増大し,物理的に妥当な境 界条件を満たさない.時間的には指数関数 的に減衰する**崩壊状態**(decaying state)であ る.漸近領域で $|\Psi(r,t)|^2 \propto \exp(-t/\tau)$ と表せ ば,崩壊寿命τはħ/Γとなり,(1)が再現される.

Γが大きすぎると,直接散乱で粒子がポ テンシャル場を通過する時間に比べて共鳴 状態の寿命の方がかえって短くなり,散乱 の中間状態の意味が薄れ,共鳴散乱とは言 い難くなる. S 行列の極の言葉で言えば, 複素 k 平面の実軸からはるかに離れた極の 効果は,物理現象が実際に起こる実数 k で の散乱に殆ど影響を与えなくなり,バック グラウンドの散乱の方が主要になる,とい うことである.

(D) $k = k_1 - ik_2$ ($k_2 > k_1 > 0$) の場合

 $E = -(k_2^2 - k_1^2)\hbar^2 / 2m - ik_1k_2\hbar^2 / m ,$

 $\psi(r;k) \xrightarrow{r \to \infty} C \exp(+ik_1 r) \exp(+k_2 r),$ $|\Psi(r,t)|^2 \xrightarrow{r \to \infty} |C|^2 \exp(+2k_2 r) \exp(-\Gamma t/\hbar).$

(27)

これは(C)の共鳴極とよく似た性質をもつ ため、ふつうとくに区別しないが、それが 一因で virtual state を共鳴状態の極限と誤解 する人が多く、ここでは敢えて明確に分け た.(D)で $k_1 \rightarrow 0$ の極限を取れば virtual state に繋がるが、(D)はエネルギーの実数部が負 で、共鳴散乱には対応しない.

なお, $k \ge -k^*$ でのS行列には関係式

 $S^{*}(k) = S(-k^{*})$ (28)

が成り立ち(付録 D), $k = k_1 - ik_2$ が S 行列の 極なら $-k^* = -k_1 - ik_2$ も極である.即ち,複 素 k 平面上で虚軸上以外の極は必ず虚軸を 挟んで左右対称に対で現れる(図 7).

V. 散乱断面積への virtual states と束縛状 態の影響

ここでも *s* 波散乱を扱う. 位相のずれ $\delta(k)$ は実数波数の $k \rightarrow 0$ の極限で $n\pi$ に近 づくという Levinson 定理がある[6, 11–13]. *n* は同じポテンシャル場のもとに存在する 束縛 *s* 状態数で、0 か正の整数だから、 sin $\delta(k)$ は $k \rightarrow 0$ で 0 に近づき、 cot $\delta(k)$ は 発散する. ただし例外があり、n+1個目の 束縛状態がちょうど束縛エネルギー0 でで きる強さのポテンシャルでは、 $k \rightarrow 0$ で $\delta(k)$ は $n\pi + (\pi/2)$ に、cot δ は0に近づく[6, 12,13].

 $k \rightarrow 0 \operatorname{c} \cot \delta$ は発散しても、 $k \cot \delta$ は定数($-\kappa$ と置こう)に近づく[5, 6, 11, 13]:

$$\lim_{k \to 0} k \cot \delta(k) = -\kappa.$$
(29)

エネルギー0の束縛状態ができるときには, 当然*к*=0である.

低エネルギー散乱断面積 σ はs波断面積 で決まるが、それは

$$\sigma = \frac{4\pi}{k^2} \sin^2 \delta = \frac{4\pi}{(k \cot \delta)^2 + k^2}$$
(30)

と書けるから、(29)を使えば、

$$\lim_{k \to 0} \sigma = 4\pi / \kappa^2 = 4\pi A^2 \tag{31}$$

となる. *A*(=1/*κ*)は長さの次元をもち, 散 乱長(scattering length)と呼ばれる. エネルギ −0の束縛状態があるときには*A*=∞で, ゼ ロエネルギー極限断面積は発散する.

ところで、S行列は

. . .

$$S(k) = \frac{e^{+i\delta}}{e^{-i\delta}} = \frac{\cos \delta + i \sin \delta}{\cos \delta - i \sin \delta}$$
$$= \frac{k \cot \delta + ik}{k \cot \delta - ik}$$
$$\approx \frac{\kappa - ik}{\kappa + ik} \quad (153)$$
(32)

と書ける.小さな|k|でのみ成り立つ最後の 式によれば、 $|\kappa|$ が小さいときS(k)は $k = i\kappa$ に極をもち、前節の(A)、(B)により、エネル ギー $E_b = -(\hbar\kappa)^2/2m$ の浅い束縛状態($\kappa > 0$ のとき)か virtual state ($\kappa < 0$ のとき)が存在 する.複素 k 平面の原点に近い極なので、 小さな実数の k での散乱に大きな影響を与 え、低エネルギー極限断面積(31)、即ち

$$\lim_{k \to 0} \sigma = 2\pi \hbar^2 / (m \mid E_b \mid)$$
(33)

が非常に大きくなる. k (したがって E)が増 えて極から遠ざかれば, $\sigma(E)$ は減少する.

非常に大きな低エネルギー断面積が見ら れるとき,それが浅い束縛状態に起因する のかvirtual state に依るのかは,積分断面積 の $E \rightarrow 0$ の極限だけからは区別できない. しかし, ($E \neq 0$ の)低エネルギー散乱微分断 面積にはこの2つの違いが反映される. ゼ ロエネルギーではs 波しか寄与しないから 角分布は球対称になってしまうが,p 波が 効いてくれば κ の正負が微分断面積に影響 する.したがって,前方散乱と後方散乱を 別々に測定できれば,この2つの区別がで きる.

ではこの 2 つの場合で,実数 k での散乱 波動関数がどう違うか,調べよう. (4)は

$$\psi(r;k) \xrightarrow{r \to \infty} C \sin(kr + \delta)$$
$$= C'(\sin kr \cot \delta + \cos kr)$$

となるが、小さなkの極限では漸近領域に 達したrについても $kr \ll 1$ と見て良いから、

$$\psi(r;k) \xrightarrow{r \to \infty} C'[(k \cot \delta)r + 1]$$

$$\xrightarrow{k \to 0} -C'(\kappa r - 1) = C''(r - A)$$
(34)

と書ける. この漸近形を仮に小さなrまで 戻してくると,束縛状態($\kappa > 0, A > 0$)ならば どこかで符号を変えるが,virtual state ($\kappa < 0, A < 0$)なら原点まで符号を変えない.

断面積にピークが現れる共鳴散乱に比べ, エネルギー0 で断面積が最大値を取る virtual state 効果を,共鳴エネルギー E_r が 0 になった極限だと間違う人がいる.しかし, 前節の(D)で述べたように,virtual state は共 鳴極の極限では決してない.エネルギーの 実部が負,虚部が0の状態であり,実部 E_r が正,虚部 $-\Gamma/2$ が負の共鳴極とは全く違う. ただし,用語の定義自体が違う場合もある

図 8. 電子衝撃による HCl 分子の振動励起断面積 に見られる virtual state 効果[14].

ので注意を要する(付録 B).

なお、ポテンシャル散乱と違い、 例えば 電子・分子衝突系に virtual state や弱い束縛 状態ができると、低エネルギー極限で断面 積が急上昇する効果と,過程の閾エネルギ ー(その過程が起こり得る最低のエネルギ ー)まで下がると断面積が0に落ち込まなけ ればならない事情, つまり閾効果(threshold effect)とが重なり、振動励起断面積などに鋭 いピークが現れることがある(図8).30年近 く昔,いくつかの(主に極性)分子で振動励起 閾値付近に鋭いピークが観測[14]されてか ら長年、共鳴か virtual state かの論争が続い た. 当時は原子物理で実際に virtual state が 確認されたことがまだ無く、混乱したが、 現在ではいくつかの例が知られている.分 子の場合,核配置を変えると共鳴極が消え たり, 前節の(D)を経由して virtual state に移 ることがあり、 振動運動のさなかに事情が

くるくると変わることもあって,たいへん 複雑である.

短距離型ポテンシャルによる散乱では式 (29)の次の項は散乱エネルギーに比例し,

$$k \cot \delta(k) \simeq -1/A + (\rho/2)k^2 \qquad (35)$$

と書け, (31)にも k² に比例する項が入る[5, 11,13]. ρは有効距離(effective range)と呼ば れる定数で, (35)や k² 項まで入った断面積 の式を有効距離展開 (effective-range expansion)式, その理論を有効距離理論 (effective-range theory, ERT)という. r^{-4} に比 例する漸近形をもつ分極相互作用のような 長距離力があると、 k^2 項より低次の k に比 例する項, $k^2 \ln k$ に比例する項が入り複雑 になるが、 電子・ 原子衝突、 陽電子・ 原子 衝突などではこれを無視できない. この理 論を変形有効距離理論 (modified effective-range theory, MERT)という. 標的が 分子になると双極子相互作用($\propto r^{-2}$),四極 子相互作用(∝r-3)も生じ、これらが理論を ますます複雑にする.

IV. 結論

以上,原子分子過程での共鳴現象の概観 から始め,ポテンシャル散乱について多少 詳しく共鳴散乱と virtual state の理論を紹介 した.実際の原子分子過程での共鳴や virtual state についても,これの類推で大雑 把な見当はつくであろう.しかし,原子分 子過程は本質的に多自由度,多チャネルの 現象で,それに伴う複雑さ,多様性,面白 さはポテンシャル散乱理論からは想像でき ない.1 つの共鳴状態が形成されても,そ の壊れ方,つまり行き先のチャネルにはい くつもの可能性があり,しかもそれらのチ ャネルは互いに結合(couple)している.また その共鳴状態はいくつか異なるチャネルか ら出発して作ることもできる. 個々の過程 についてこれをきちんと理論的に調べるに は,これらのチャネルが結合した連立微分 (または微積分)方程式を研究する必要があ る.この連立方程式を緊密結合方程式 (close-coupling equations)という[15].多チャ ネル現象である Feshbach 共鳴はこの方程式 から出てくる[16,17]. Feshbach がこれを形 式的に扱った一般理論[2]の概念を付録Aで 解説する.

References

- [1] M. Domke et al., Phys. Rev. Lett. 66, 1306 (1991).
- [2] H. Feshbach, Ann. Phys. (N.Y.) 19, 287 (1962).
- [3] M. Allan, J. Phys. B 18, L451 (1985).
- [4] 高柳和夫,電子・原子・分子の衝突,改訂版(培 風館,1996),第2節.
- [5] N. F. Mott and H. S. W. Massey, *The Theory of Atomic Collisions* (Oxford Univ. Press, 1965) Chap.
 II [高柳和夫,市川行和,島村勲 訳: 衝突の理論上I(吉岡書店, 1975) 第 II 章].
- [6] B. H. Bransden and C. J. Joachain, *Physics of Atoms and Molecules* (Longman, London, 1983), Sec. 11.3.
- [7] L.I. Schiff, Quantum Mechanics, 3rd ed. (McGraw-Hill, N.Y., 1968), Sec. 19.
- [8] Ref. [5], Chap. XVIII [邦訳:下 I (1976)第 XVIII 章].
- [9] E. P. Wigner, Phys. Rev. 98, 145 (1955).
- [10] U. Fano, Phys. Rev. 124, 1866 (1961).
- [11] L. D. Landau and E. M. Lifshitz, *Quantum Mechanics, 3rd ed.* (Pergamon, Oxford, 1977), Sec. 133.
- [12] Ref. [5], Chap. VII [邦訳:第 VII 章].
- [13] Ref. [7], Sec. 39.
- [14] K. Rohr and F. Linder, J. Phys. B 9, 2521 (1976).
 O. Schafer and M. Allan, J. Phys. B 24, 3069 (1991).

[15] 核物理分野では結合チャネル (coupled-channel)方程式と言う. どちらも"CC" と省略される. チャネルによっては結合が弱い ので, close-coupling は不適切かとも思われるが, いくつかのチャネル間だけ結合が強いと仮定 して他のチャネルを無視するという意味でこ の名前が付き, 定着したという歴史的な事情が ある.

[16] Ref. [6], Sec. 12.5.

[17] Ref. [11], Sec. 145.

[18] Ref. [11], Sec. 134.

付録 A: Feshbach 理論

エネルギーが 10.2 eV より低い電子と H(1s)原子との衝突で,励起エネルギー10.2 eVのH(2s)状態やH(2p)状態を励起するチャ ネルのように,エネルギー保存則で許され ないチャネルを閉じたチャネル(closed channel)という.このようなチャネルはある 過程の中途段階で実現できても,その過程 が終了するまで持続できない.一方,エネ ルギー的に許されるチャネル(上の例では, 弾性散乱チャネル)は過程の終了時まで,つ まり漸近領域に系が出てくるまで消えずに 持続する.これを開いたチャネル(open channel)という.

時間非依存の散乱波動関数 ψ から閉チャ ネルだけ取り出す操作を演算 Q,開チャネ ルだけ取り出す操作を演算 Pで表そう. P, Qを(Feshbach σ)射影演算子という.閉チャ ネルと開チャネルの 2 種類しかあり得ない から, $P\psi + Q\psi = \psi$, つまり P + Q = 1であ る. ψ からまず閉チャネルを取り出し,そ の結果から開チャネルを取り出そうとして も無いから, $P(Q\psi) = 0$,またその逆も同じ で $Q(P\psi) = 0$.開(閉)チャネルを取り出し, それにもう一度同じ操作をしても変わりが ないから, $P(P\psi) = P\psi$, $Q(Q\psi) = Q\psi$. こ れらをまとめると、関数に施す操作の規則 P+Q=1, PQ=QP=0, $P^{2}=P, Q^{2}=Q$ (36)

が成り立つ.

Feshbach の論文[2]に従い, Schrödinger 方 程式 $0 = (H - E)\psi$ に(36)を使えば

$$0 = P(H - E)\psi = P(H - E)(P\psi + Q\psi)$$

$$= \{P(H - E)P\}P\psi + (PHQ)Q\psi$$

$$0 = Q(H - E)\psi = Q(H - E)(P\psi + Q\psi)$$

$$= (QHP)P\psi + \{Q(H - E)Q\}Q\psi$$
(38)

を得る. 第 2 の式を移項し, *Qψ* について 形式的に解くと

 $Q\psi = -\{Q(H-E)Q\}^{-1}(QHP)P\psi,$

これを第1の式に代入すると次の式を得る:

 $[\{P(H-E)P\}$

$$-PHQ\{Q(H-E)Q\}^{-1}QHP]P\psi = 0.$$
(39)

これで $Q\psi$ に関する方程式が消え,形式 的に $P\psi$ だけに関する方程式になっている. 非弾性散乱が起こらないエネルギーでは $P\psi$ は弾性散乱チャネルだけで,(39)は単一 チャネル問題になる.その第1項はP空間 内での,即ち開チャネル波動関数について の通常の Schrödinger 方程式と思ってよい. {P(H-E)P}の左右にあるPは,開チャネ ル関数の話ですよ,との断りと思ってよい.

第2項は閉チャネルとの結合の効果とし て開チャネルに加わった有効ポテンシャル であり,以下 V_{eff} と書く.これと第1項の中 のポテンシャルの和を光学ポテンシャル (optical potential) という.問題は $\{Q(H-E)Q\}^{-1}$ の部分で,あまりに抽象的で ポテンシャルの具体形が見えにくい.まず, ハミルトニアン H は座標についての微分演 算を含むから,演算 $\{Q(H-E)Q\}$ の逆演算 $\{Q(H-E)Q\}^{-1}$ は座標に関する積分演算を 表すことが想像される.また,その中に E があるから, V_{eff} が衝突エネルギーにより変 化するポテンシャルだとわかる.次に,Q 空間、つまり閉チャネルにエネルギー E_0 の 束縛状態 $Q\psi$ があれば、閉チャネル Schrödinger 方程式

 ${Q(H-E_0)Q}Q\psi=0$ (40) が満たされるので、 ${Q(H-E)Q}$ の逆演算 は $E=E_0$ で発散し、その前後で急激な E 依 存性を示す.それが断面積にももちろん反 映され、共鳴構造が表れることになる.

この共鳴,即ち Feshbach 共鳴は,閉チャ ネルの束縛状態 Qw に起因する開チャネル 光学ポテンシャル自身の急激なエネルギー 依存性によるもので,エネルギーに依らな いポテンシャルに捕まる形状共鳴とは本質 的に異なる. Qw が共鳴状態の役割を演ず るので閉チャネル共鳴ともいう.

最後に光学ポテンシャルについて補足する. ${Q(H-E)Q}^{-1}$ が積分演算を表すと述べたが,例えば関数 $\phi(\mathbf{r})$ にこの演算を施すと

$$\mathcal{V}(\mathbf{r},\mathbf{r}')\phi(\mathbf{r}')d\mathbf{r}' \tag{41}$$

という形になる. このポテンシャルは, 粒 子の位置 r だけの関数としては表せず, 空 間内全域に亘る波動関数自身に影響される ので, 図示できない. この形を非局所ポテ ンシャル(nonlocal potential)と呼び, これに 対し粒子位置で決まるふつうのポテンシャ $\nu V(\mathbf{r})$ を局所ポテンシャル(local potential) と呼ぶ.

付録 B: 用語の整理

本文では主に3 通りの意味で共鳴状態と いう言葉を使った.第1は共鳴過程の原因 になる束縛状態型波動関数で,(18)の表記で は φ に,付録AのFeshbach理論では(40)を 満たす閉チャネル束縛状態 $Q\varphi$ に相当する. 第2はこれに連続状態が混ざり振動しなが ら漸近領域に達する状態で,(18)の表記では $\psi(E \simeq E_r)$ に,Feshbach理論では $E \simeq E_0$ での 波動関数ψに相当する状態である. この 2 種類の"共鳴状態"はしばしば断りなしに混 同して使われるが,あまり誤解は起こさな いようである. 第3は第 IV 節(C)の複素エ ネルギー状態で,現実の物理状態を記述す るものではなく,仮想的な状態と言っても よい.

第1の共鳴状態は "quasi-bound state" と か、"quasi-stationary state"[18], "quasi-discrete state" [18]などとも呼ばれる.また Schiff の 教科書[7]などは、束縛状態に似てはいるが ハミルトニアンの本当の固有状態ではない、 というほどの意味で "virtual state"、"virtual energy level" と呼んでいるが、これは混乱 を招いて好ましくない.この意味での "virtual state" なら正のエネルギーをもつ.

一方,本文第 IV 節(B)の virtual state は負 のエネルギーをもつ.これによる低エネル ギー断面積の増大を"virtual state resonance", またごく弱い束縛状態による低エネルギー 断面積の増大を"resonance"[7,11],"zeroenergy resonance"[6,13]などと呼ぶこともあ る.弱い束縛状態や virtual state による断面 積の増大は(本文の意味での)共鳴散乱とは 物理的機構もエネルギー依存性も違うのだ が,Landau[11]も Schiff[7]も,"何らかの準 位"付近で,つまり"衝突エネルギーがこ の準位に共鳴する(in resonance)"ときに散乱 が大きく影響されるのを,一括して "resonance"と呼んでいる.

S行列の極 $k = i\kappa$ で,正で小さな κ が0を 通り負になると事情がどう変わるか Schiff[13]は論じているが,Landau[11]とは違い, $\kappa < 0$ をvirtual state とは呼んでいない.

位相のずれ $\delta(E)$ が $\pi/2$ の奇数倍を正の 傾きでよぎるのを"共鳴"とする文献もあ ることを、本文で述べた. Schiff[7]もその例 で、エネルギー0の束縛状態があるときに $\delta(E=0)$ が $\pi/2$ の奇数倍になり低エネルギ ー極限断面積が発散するのを共鳴と彼が呼 ぶのも、"共鳴"のこの定義とならば矛盾せ ず、Schiff の中では一貫性がある.

以上,説明した用語は、いろいろなグル ープの慣習により、また著者の注意深さ程 度にもより、残念ながらときどき曖昧に、 また混同して使われている."resonance"、

"in resonance", "virtual", "quasi-", "pseudo-"等同じ単語が,あるときは狭い 意味での明確な術語として,またあるとき は一般的な形容詞,形容句などの意識で使 われる.文献を読むときには,各用語が本 稿で説明したもののうちどれを意味するの か,前後の文脈から適切に判断していただ きたい.ときには著者自身が混乱し,間違 った議論をしていることもあるので,それ を見抜く注意が必要である.

付録 C: 時間遅れと位相のずれの関係

簡単な例として*s*波散乱を考え, 添え字 0 は省略する. 波束の動きを調べるため, エ ネルギーE のわずかに違う 2 つの時間依存 内向き波 $\Psi^{(-)}(E) = e^{-ikr-iEt/\hbar}$ を重ね合せた簡 単な波束 $\Phi^{(-)} = \Psi^{(-)}(E_{-}) + \Psi^{(-)}(E_{+})$ を作る. $E_{\pm} = E \pm \Delta E$ とし, これに対応する波数 k を $k_{\pm} = k \pm \Delta k$ と書く. $\Phi^{(-)}$ の虚部を取ると(実 部でも最終結果は同じ),

 $Im \Phi^{(-)}$ = $-\sin(k_r + E_t/\hbar) - \sin(k_r + E_t/\hbar)$ = $-2\cos(\Delta k \cdot r + \Delta E \cdot t/\hbar)\sin(kr + Et/\hbar)$

と書ける.これは激しく振動する正弦波に ゆっくり振動する余弦波の振幅がかかる簡 単な波束を表す.余弦波の位相が0になる rが最大振幅,つまり波束の山の位置だから,

 $r = -\{\Delta E / \Delta(\hbar k)\}t = -vt$ (42) と波束は動く、つまり群速度 $v = \Delta E / \Delta(\hbar k)$ で内向きに等速運動をする.

一方,漸近的外向き波は位相のずれ $\delta(E)$ を含む形 $\Psi^{(+)}(E) = e^{+ikr-iEt/\hbar+2i\delta}$ を取るから, $\delta_{\pm} = \delta(E = E_{\pm}) = \delta \pm \Delta \delta$ と置くと,波束 $\Phi^{(+)} = \Psi^{(+)}(E_{-}) + \Psi^{(+)}(E_{\pm})$ の虚部は

$$Im \Phi^{(+)} = \sin(k_r - E_t/\hbar + 2\delta_-) + \sin(k_r - E_t/\hbar + 2\delta_+) = 2\cos(\Delta k \cdot r - \Delta E \cdot t/\hbar + 2\Delta\delta) \times \sin(kr - Et/\hbar + 2\delta)$$

となる. したがって最大振幅位置は

$$r = \{\Delta E / \Delta(\hbar k)\}t - \{2\Delta \delta / \Delta k\}$$

 $= v[t - \{2\hbar\Delta\delta / \Delta E\}]$ (43)
 $= v[t - \Delta t]$

と動く.即ち,場との相互作用のため内向 き波束の入射後,外向き波束が出るまでに

 $\Delta t = 2\hbar d\delta / dE = -i\hbar (dS / dE)S^*$ (44) だけの時間遅れが生じる[5, 9].時間非依存 Schrödinger 方程式から得られる位相のずれ や S 行列で時間遅れが表せるのは興味深い.

付録 D: S 行列の関係式(28)の証明

波動関数 $\psi(r;k)$ についての Schrödinger 方程式(2)から出発し,*S*行列の関係式(28) を証明する.(2)全体の複素共役を取ると, 演算子は $k^2 \varepsilon(k^2)^*$ に置き換えたものになり, 波動関数は $\psi^*(r;k)$ となる.一方, $\psi(r;-k^*)$ が満たす方程式は,(2)で $k^2 \varepsilon (-k^*)^2 = (k^2)^*$ に置き換えたものである.したがって, $\psi^*(r;k) \ge \psi(r;-k^*)$ は同じ方程式を満たし, 定数係数の違いしかない.(4)を使うと,そ れぞれの波動関数の漸近形は

$$\psi^*(r;k) \propto e^{+ik^*r} - S^*(k)e^{-ik^*r}$$

 $\psi(r;-k^*) \propto e^{+ik^*r} - S(-k^*)e^{-ik^*r}$

だから,

$$S^*(k) = S(-k^*)$$

でなければならない.